In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to...In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.展开更多
Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and ...Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes.展开更多
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom...In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft.展开更多
With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are r...With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are rising,increasing the risk of partial discharge(PD),and presentingsignificant challenges to insulation safety.Therefore,this paperaddresses this issue and proposes potential solutions.Firstly,thepaper examines an 8-pole,48-slot,6-layer HW TM to highlightthe unique characteristics of this winding structure,and explainsthe uneven distribution of interturn voltage stress andtemperature.Subsequently,a high-frequency equivalent circuitmodel of the HW TM prototype is developed.The error ofsimulation and experiment is only 5.7%,which proves theaccuracy of the model.Then,an improved HW scheme isproposed to lower the maximum voltage stress by 29.3%.Furthermore,the temperature distribution of HW TM isanalyzed to facilitate a detailed examination of the impact oftemperature on insulation PD.Finally,the partial dischargeinception voltage(PDIV)of interturn insulation,consideringtemperature effects,is calculated and verified throughexperiment.The paper proposes a reliability-oriented designmethod and process for HW TM.It demonstrates that thereliability-oriented design can achieve PD-free performance inthe design stage of HW.展开更多
Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crossl...Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crosslinking strategy to strengthen sugarfunctionalized graphene fluoride(SGF)and cellulose nanofibers(CNF)by hydrogen bonding and metal ion crosslinking that leads to simultaneous enhancements in thermal conductivity and mechanical properties.The facile sugarassisted ball-milling exfoliation method was developed to achieve the exfoliation of graphite fluoride and hydroxyl group functionalization on the surface of graphene fluoride.Thanks to the good dispersibility of the SGF sheets in water,the flexible SGF/CNF composite papers with hydrogen bonding were prepared via vacuum-assisted filtration.We introduced hydrogen bonding and metal ion crosslinking into SGF/CNF papers to obtain densely packed composite papers.Ca^(2+)or Al^(3+)ion-crosslinked SGF/CNF papers exhibited superior thermal and mechanical properties owing to hydrogen bonding and metal ion crosslinking.SGF/CNF-Ca^(2+)and SGF/CNF-Al^(3+)papers at 50 wt%of SGF yield in-plane thermal conductivities of 72.93 and 75.02 W m^(-1) K^(-1),and tensile strengths of 121.5 and 135.7 MPa,respectively.A thermal percolation value was observed at 12.6 vol%of SGF filler content.In addition,the SGF/CNF papers exhibited electrical insulation properties.These remarkable characteristics of the metal ion-crosslinked SGF/CNF papers are attributed to the densely packed structures caused by the strong interfacial interactions from hydrogen bonding as well as metal ion-crosslinking that could promote phonon transport.High-performance metal ion-crosslinked SGF/CNF papers with these fascinating advantages offer great potential for the thermal management of flexible electronics.展开更多
Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the ...Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment.展开更多
Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken u...Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken up by oligodendrocytes.Oligodendrocytes are marked by the expression of the lineage determinants Sox10 and Olig2 and arise from oligodendrocyte precursor cells(OPCs)during embryonal stages.While the majority of OPCs differentiate into mature oligodendrocytes when nearby axonal segments require myelination,a small subpopulation of OPCs persist as a progenitor pool.Therefore,the timing of myelination and maintenance of the OPC pool both need to be precisely regulated.Different transcription factors either positively or negatively affect oligodendrocyte differentiation and maintenance of the OPC pool as components of a complex gene regulatory network(reviewed in Sock and Wegner,2021).Network activity is additionally influenced by extracellular signaling molecules that bind to receptors on the oligodendroglial cell surface and activate intracellular signaling pathways.How the receptors are linked to the network is poorly understood so far,but pivotal to understanding the overall regulation of central nervous system(CNS)myelination in response to environmental cues.Relevant insights were recently gained for Gpr37(Schmidt et al.,2024),a G-protein coupled receptor(GPCR)with known relevance in differentiating oligodendrocytes(Yang et al,2016).展开更多
Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applica...Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.展开更多
In moiré-patterned van der Waals structures of transition metal dichalcogenides,correlated insulators can form under integer and fractional fillings,whose transport properties are governed by various quasiparticl...In moiré-patterned van der Waals structures of transition metal dichalcogenides,correlated insulators can form under integer and fractional fillings,whose transport properties are governed by various quasiparticle excitations including holons,doublons and interlayer exciton insulators.Here we theoretically investigate the nearest-neighbor inter-site hoppings of holons and interlayer exciton insulators.Our analysis indicates that these hopping strengths are significantly enhanced compared to that of a single carrier.The underlying mechanism can be attributed to the strong Coulomb interaction between carriers at different sites.For the interlayer exciton insulator consisting of a holon and a carrier in different layers,we have also obtained its effective Bohr radius and energy splitting between the ground and the first-excited states.展开更多
We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron...We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron hopping parameters,the strong-coupling pseudogap in the two-dimensional Hubbard model can be either enhanced or suppressed in the doped Mott insulator regime.We find that in underdoped cases,the closing of pseudogap leads to a significant enhancement of superconductivity,indicating competition between the two in the underdoped regime.In contrast,at large dopings,suppressing the pseudogap is accompanied by a concurrent decrease in the superconducting transition temperature Tc,which can be attributed to a reduction in antiferromagnetic correlations behind both the pseudogap and superconductivity.We elucidate this evolving relationship between pseudogap and superconductivity across different doping regimes.展开更多
As the application scenarios of aerogels expand,higher requirements are put forward for the materials used to prepare aerogels.Due to the unique chemical structure,polytetrafluoroethylene(PTFE)has excellent properties...As the application scenarios of aerogels expand,higher requirements are put forward for the materials used to prepare aerogels.Due to the unique chemical structure,polytetrafluoroethylene(PTFE)has excellent properties such as high-temperature resistance,hydrophobicity,and chemical stability.However,the PTFE aerogels are difficult to be molded due to the weak interaction between resin particles.In this work,poly(ethylene oxide)(PEO)was selected as the carrier to assist the PTFE aerogels molding.The pure PTFE aerogels were prepared by homogeneously mixing PTFE aqueous dispersion and PEO,freeze-drying,and high-temperature sintering.When the mass fraction of PTFE and PEO were appropriate,the porosity of PTFE aerogels exceeded 90%and had a hierarchical honeycomb structure.Results showed that the PTFE aerogels not only had excellent hydrophobicity but also possessed superior acoustic insulation,mechanical strength,thermal insulation,and heat resistance properties.Specifically,the water contact angle is about 140°.The noise reduction coefficient is 0.34 and the average sound absorption coefficient is greater than 88%in the frequency range of 2000-6400 Hz.Meanwhile,the thermal conductivity in the air is about 0.045 W/(m·K),and the initial thermal decomposition temperature is 450℃.More importantly,the PTFE aerogels had excellent temperature and corrosion resistance.Even after extremely thermal and chemical treatment,they remained unchanged porous structure as well as acoustic and thermal insulation properties,which exhibits great potential for application in many harsh environments.展开更多
Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain su...Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling.While different strategies have been developed to mitigate heat gains,they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport.Here,an anisotropic synergistically performed insulation-radiation-evaporation(ASPIRE)cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport.The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of~8.2℃ and a remarkable peak cooling power of 311 W m^(-2)under direct sunlight.Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation.Moreover,self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days.The synergistic design provides new insights toward high-power,sustainable,and all-weather passive cooling applications.展开更多
This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and e...This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and enhance the gross national product. The process starts by collecting low-cost sheep fleece from farms and processed via a production line, including scouring, plucking, carding, thermal bonding, and packing. The design process involves determining an optimal location, infrastructure, staffing, machinery, environmental impact, and utilities. A final economic analysis is undertaken to estimate the product’s cost, selling price, and break-even point based on the anticipated capital and operational costs. The plant is intended to process 6778 tons of sheep wool annually. The study suggests that Mafraq Industrial City is a perfect location for the plant, and purchasing land and structures is the optimal option. The projected capital cost is 1,416,679 USD, while the anticipated operational costs amount to 3,206,275 USD. Insulation material production is estimated to be 114,756 m3 annually. The material may be manufactured into 1 m wide, 0.05 m thick sheets for 2.02 USD per square meter. Thus, for a 10-year plant, a 2.47 USD/m2 selling price breaks even in one year.展开更多
Fluorination is a critical surface modification technique for enhancing the electrical performance of composite insulators.This study employs molecular simulations to examine the microstructure and space charge behavi...Fluorination is a critical surface modification technique for enhancing the electrical performance of composite insulators.This study employs molecular simulations to examine the microstructure and space charge behavior of fluorinated and non-fluorinated silicone rubber under an electric field,with experimental validation.The results show that fluorinated silicone rubber exhibits lower total energy,higher polarization,and stronger dipole moments compared to its non-fluorinated counterpart,shifting the material from an insulating to a conductive state.Under lower electric field strengths,the carbon-silicon bonds in fluorinated silicone rubber are longer,but it maintains geometric stability under higher fields.The energy gap changes across different fluorination modes and varies with electric field strength,indicating that fluorination affects conductivity differently at various field intensities.Both fluorination methods improve conductivity in the 0–3.8 V/nm range,with substitutional fluorination showing superior performance between 3.8 and 8.9 V/nm.Above 9.1 V/nm,fluorination maximizes conductivity.The fluorinated samples exhibit a greater redshift at higher electric fields,resulting in enhanced conductivity and improved surface charge distribution.These findings offer insights into the microscopic effects of fluorination on silicone rubber’s electrical properties,while experiments confirm that fluorination increases hydrophobicity and boosts DC flashover voltage,further enhancing the material’s performance.展开更多
Radical anions of electron-deficient perylene diimides(PDI)are attractive near-infrared(NIR)absorbers for photothermal conversion;however,their stability is often compromised by strong aggregation and reoxidation in a...Radical anions of electron-deficient perylene diimides(PDI)are attractive near-infrared(NIR)absorbers for photothermal conversion;however,their stability is often compromised by strong aggregation and reoxidation in air.Herein,we present a class of bacterial composites hybridized with a newly synthesized doubly-strapped PDI cyclophane,termed“Gemini Box”(GBox-3^(4+)),which features air-stable PDI radicals for NIR photothermal conversion.The effective spatial isolation provided by the double-sided cationic molecular straps allows GBox-3^(4+)to completely suppress chromophore aggregation,even in concentrated aqueous solutions up to 2 mmol/L,thereby preserving its characteristic fluorescence for live-cell imaging.After incubation of bacteria with GBox-3^(4+),the radical species PDI·-have been found to stably exist in the bacterial composites under ambient conditions,both in aqueous suspension and solid forms.Further experiments demonstrate that the air stability of the radical species relies on the simultaneous presence of the doubly-strapped PDI dye and the bacteria.Moreover,the dye-bacterial composites exhibited an high-efficiency NIR photothermal effect with high durability,enabling their application as photothermal agents for seawater desalination.This work provides a new access to the in situ fabrication of photothermal materials from biomass,relying on the rational molecular design and the unique microenvironment of bacteria.展开更多
The advancement of sophisticated smart windows exhibiting superior thermoregulation capabilities in both solar spectrum and long-wave infrared range maintains a prominent objective for researchers in this field.In thi...The advancement of sophisticated smart windows exhibiting superior thermoregulation capabilities in both solar spectrum and long-wave infrared range maintains a prominent objective for researchers in this field.In this study,a Janus window is proposed and prepared based on polymer-stabilized liquid-crystal films/thermochromic materials.It can achieve switchable front long-wave infrared emissivity(ε_(Front))and solar modulation ability(ΔT_(sol))through dynamic flipping,making it suitable for different seasonal energy-saving requirements.Outdoor experiments show that under daytime illumination,the indoor temperature decreases by 8℃,and the nighttime temperature drops by 5℃.MATLAB simulation calculations indicate that the daytime cooling power is 93 W m^(-2),while the nighttime cooling power reaches 142 W m^(-2).Interestingly,by modifying the conductive layer,it can effectively shield electromagnetic radiation(within the X-band frequency range(8.2-12.4)GHz).Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer polymer-stabilized liquid crystal,poly(N-isopropyl acrylamide),and normal glass when applied in different climate zones.This research presents a compelling opportunity for the development of sophisticated smart windows characterized by exceptional thermoregulation capabilities.展开更多
Polyester staple fibres are widely used in the US textile industry,particularly in clothing,home textiles,and industrial applications,They are commonly blended with cotton to create affordable,durable fabrics used in ...Polyester staple fibres are widely used in the US textile industry,particularly in clothing,home textiles,and industrial applications,They are commonly blended with cotton to create affordable,durable fabrics used in items like casual wea r,bed linens,and towels.In addition to their use in fashion,polyester staple fibres are integral to the automotive sector for upholstery and insulation.The US has also seen a rise in the use of recycled polyester,driven by sustainability trends.展开更多
This study focuses on the electrical properties and microstructure of polypropylene(PP)-based blends used for cable insulation in nuclear power plants(NPPs).The PP-based blend,comprising isotactic PP and propylene-bas...This study focuses on the electrical properties and microstructure of polypropylene(PP)-based blends used for cable insulation in nuclear power plants(NPPs).The PP-based blend,comprising isotactic PP and propylene-based elastomer(PBE)at concentrations ranging from 0 to 50 wt%,underwent a melt blending process and subsequent cobalt-60 gamma-ray irradiation with doses ranging from 0 to 250 kGy.Electrical conductivity,trap distribution,and alternating(AC)breakdown strength were chosen to assess the insulation performance.These results indicate that the addition of PBE significantly improves the electrical properties of PP under irradiation.For PP,the electrical conductivity increased with irradiation,whereas the trap depth and breakdown strength decreased sharply.Conversely,for the blend,these changes initially exhibit opposite trends.When the irradiation was increased to 250 kGy,the AC breakdown strength of the blend improved by more than 21%compared to that of PP.The physical and chemical structures of the samples were investigated to explore the improvement mechanisms.The results offer insights into the design of new cable-insulation materials suitable for NPPs.展开更多
We synthesized tungsten-doped vanadium dioxide(W-VO_(2))particles via a one-step hydrothermal method,followed by their integration with antimony-doped tin oxide(ATO)nanoparticles to formulate a composite coating.Subse...We synthesized tungsten-doped vanadium dioxide(W-VO_(2))particles via a one-step hydrothermal method,followed by their integration with antimony-doped tin oxide(ATO)nanoparticles to formulate a composite coating.Subsequently,the VO_(2)/ATO composite coating was fabricated through a spin-coating process.The impact of varying W-VO_(2) content and coating thickness on the performance of the composite coatings was systematically investigated by employing X-ray diffraction,particle size distribution analysis,spectrometry,and other pertinent test methodologies.Our findings revealed that an escalation in both W-VO_(2) content and coating thickness retained high transmittance in the near-infrared band at lower temperatures.However,as the temperature increased,a notable reduction in transmittance in the near-infrared band was observed,alongside a slight decrease in transmittance within the visible band.Remarkably,when the W-VO_(2) content reached 5%and the coating thickness was 1253 nm,the transmittance of the composite coating surpassed 80%.Furthermore,the heat insulation effect achieved a remarkable 10.0℃increase.Consequently,the synthesized composite coating demonstrates significant potential for smart glass applications,particularly in the realm of heat-insulating glass.展开更多
Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability...Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability of conventional PvDF is severely limited by its rapid crystallization kinetics and poor melt strength.Although ultra-high molecular weight PVDF(H-PVDF)theoretically offers prolonged melt elasticity favorable for foaming,the extremely high melt viscosity poses substantial processing challenges,and its foaming behavior has remained largely unexplored.To address these issues,this study proposes a novel fabrication strategy combining solvent casting with microcellular foaming to prepare H-PVDF foams.Dynamic mechanical analysis and differential scanning calorimetry reveal that extensive chain entanglements in H-PVDF impose constraints on crystallization and significantly enhance melt strength.By tuning the processing parameters,the distinctive foaming be-havior of H-PVDF under various conditions is systematically elucidated.Remarkably,a record-high expansion ratio of 55.6-fold is achieved,ac-companied by a highly uniform and fine cellular structure.The resulting H-PVDF foams exhibit a low thermal conductivity of 31.8 mW·m^(-1).K^(-1),while retaining excellent compressive strength,flame-retardancy,and hydrophobicity.These outstanding properties highlight the great potential of H-PVDF foams as the thermal insulation materials for applications in aerospace,energy infrastructure,and other extreme environments.展开更多
文摘In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.
基金the National Natural Science Foundation of China(No.52078144)the National Natural Science Foundation of China(No.52108073)the Innovation Research for Postgraduates of Guangzhou University(No.2021GDJC-D15).
文摘Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes.
基金supported by the Natural Science Foundation of Shanxi Province(Nos.20210302123015 and 20210302123035)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(No.sklpme2022-4-06)the Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect(No.ZBKF2022030301).
文摘In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft.
基金supported by the Project of National Natural Science Foundation of China under Grant 52407060 and 52422704supported by Liaoning Province science and technology plan doctoral project under Grant 2023-BSBA-255.
文摘With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are rising,increasing the risk of partial discharge(PD),and presentingsignificant challenges to insulation safety.Therefore,this paperaddresses this issue and proposes potential solutions.Firstly,thepaper examines an 8-pole,48-slot,6-layer HW TM to highlightthe unique characteristics of this winding structure,and explainsthe uneven distribution of interturn voltage stress andtemperature.Subsequently,a high-frequency equivalent circuitmodel of the HW TM prototype is developed.The error ofsimulation and experiment is only 5.7%,which proves theaccuracy of the model.Then,an improved HW scheme isproposed to lower the maximum voltage stress by 29.3%.Furthermore,the temperature distribution of HW TM isanalyzed to facilitate a detailed examination of the impact oftemperature on insulation PD.Finally,the partial dischargeinception voltage(PDIV)of interturn insulation,consideringtemperature effects,is calculated and verified throughexperiment.The paper proposes a reliability-oriented designmethod and process for HW TM.It demonstrates that thereliability-oriented design can achieve PD-free performance inthe design stage of HW.
基金supported by the Basic Science Program(No.2022R1A2C2009700)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICTthe Basic Science Research Capacity Enhancement Project(National Research Facilities and Equipment Center)through the Korea Ba-sic Science Institute funded by the Ministry of Education(No.2019R1A6C1010047)the Industrial Strategic Technology Development Program(No.20013248)through Korea Evaluation In-stitute of Industrial Technology funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crosslinking strategy to strengthen sugarfunctionalized graphene fluoride(SGF)and cellulose nanofibers(CNF)by hydrogen bonding and metal ion crosslinking that leads to simultaneous enhancements in thermal conductivity and mechanical properties.The facile sugarassisted ball-milling exfoliation method was developed to achieve the exfoliation of graphite fluoride and hydroxyl group functionalization on the surface of graphene fluoride.Thanks to the good dispersibility of the SGF sheets in water,the flexible SGF/CNF composite papers with hydrogen bonding were prepared via vacuum-assisted filtration.We introduced hydrogen bonding and metal ion crosslinking into SGF/CNF papers to obtain densely packed composite papers.Ca^(2+)or Al^(3+)ion-crosslinked SGF/CNF papers exhibited superior thermal and mechanical properties owing to hydrogen bonding and metal ion crosslinking.SGF/CNF-Ca^(2+)and SGF/CNF-Al^(3+)papers at 50 wt%of SGF yield in-plane thermal conductivities of 72.93 and 75.02 W m^(-1) K^(-1),and tensile strengths of 121.5 and 135.7 MPa,respectively.A thermal percolation value was observed at 12.6 vol%of SGF filler content.In addition,the SGF/CNF papers exhibited electrical insulation properties.These remarkable characteristics of the metal ion-crosslinked SGF/CNF papers are attributed to the densely packed structures caused by the strong interfacial interactions from hydrogen bonding as well as metal ion-crosslinking that could promote phonon transport.High-performance metal ion-crosslinked SGF/CNF papers with these fascinating advantages offer great potential for the thermal management of flexible electronics.
基金supported by the National Natural Science Foundation of China(No.22278260)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry(No.KFKT2021-14)Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology(No.KFKT2021-14).
文摘Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment.
基金supported by grants from the Deutsche Forschungsgemeinschaft to MW。
文摘Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken up by oligodendrocytes.Oligodendrocytes are marked by the expression of the lineage determinants Sox10 and Olig2 and arise from oligodendrocyte precursor cells(OPCs)during embryonal stages.While the majority of OPCs differentiate into mature oligodendrocytes when nearby axonal segments require myelination,a small subpopulation of OPCs persist as a progenitor pool.Therefore,the timing of myelination and maintenance of the OPC pool both need to be precisely regulated.Different transcription factors either positively or negatively affect oligodendrocyte differentiation and maintenance of the OPC pool as components of a complex gene regulatory network(reviewed in Sock and Wegner,2021).Network activity is additionally influenced by extracellular signaling molecules that bind to receptors on the oligodendroglial cell surface and activate intracellular signaling pathways.How the receptors are linked to the network is poorly understood so far,but pivotal to understanding the overall regulation of central nervous system(CNS)myelination in response to environmental cues.Relevant insights were recently gained for Gpr37(Schmidt et al.,2024),a G-protein coupled receptor(GPCR)with known relevance in differentiating oligodendrocytes(Yang et al,2016).
基金supported by the National Natu-ral Science Foundation of China(Grants No.12174220 and No.12074217)the Shandong Provincial Science Foundation for Excellent Young Scholars(Grant No.ZR2023YQ001)+1 种基金the Taishan Young Scholar Program of Shandong Provincethe Qilu Young Scholar Pro-gram of Shandong University.
文摘Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.
基金support by the National Natural Sci-ence Foundation of China(Grant No.12274477)the De-partment of Science and Technology of Guangdong Provincein China(Grant No.2019QN01X061)。
文摘In moiré-patterned van der Waals structures of transition metal dichalcogenides,correlated insulators can form under integer and fractional fillings,whose transport properties are governed by various quasiparticle excitations including holons,doublons and interlayer exciton insulators.Here we theoretically investigate the nearest-neighbor inter-site hoppings of holons and interlayer exciton insulators.Our analysis indicates that these hopping strengths are significantly enhanced compared to that of a single carrier.The underlying mechanism can be attributed to the strong Coulomb interaction between carriers at different sites.For the interlayer exciton insulator consisting of a holon and a carrier in different layers,we have also obtained its effective Bohr radius and energy splitting between the ground and the first-excited states.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274472,12494594,12494591,and 92165204)National Key Research and Development Program of China(Grant No.2022YFA1402802)+2 种基金Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)Guangdong Fundamental Research Center for Magnetoelectric Physics(Grant No.2024B0303390001)Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2401010)。
文摘We investigate the interplay between the pseudogap state and d-wave superconductivity in the two-dimensional doped Hubbard model by employing an eight-site cluster dynamical mean-field theory method.By tuning electron hopping parameters,the strong-coupling pseudogap in the two-dimensional Hubbard model can be either enhanced or suppressed in the doped Mott insulator regime.We find that in underdoped cases,the closing of pseudogap leads to a significant enhancement of superconductivity,indicating competition between the two in the underdoped regime.In contrast,at large dopings,suppressing the pseudogap is accompanied by a concurrent decrease in the superconducting transition temperature Tc,which can be attributed to a reduction in antiferromagnetic correlations behind both the pseudogap and superconductivity.We elucidate this evolving relationship between pseudogap and superconductivity across different doping regimes.
基金supported by the National Natural Science Foundation of China(No.52233003)the Department of Sichuan Province(No.2022JDJQ0023)。
文摘As the application scenarios of aerogels expand,higher requirements are put forward for the materials used to prepare aerogels.Due to the unique chemical structure,polytetrafluoroethylene(PTFE)has excellent properties such as high-temperature resistance,hydrophobicity,and chemical stability.However,the PTFE aerogels are difficult to be molded due to the weak interaction between resin particles.In this work,poly(ethylene oxide)(PEO)was selected as the carrier to assist the PTFE aerogels molding.The pure PTFE aerogels were prepared by homogeneously mixing PTFE aqueous dispersion and PEO,freeze-drying,and high-temperature sintering.When the mass fraction of PTFE and PEO were appropriate,the porosity of PTFE aerogels exceeded 90%and had a hierarchical honeycomb structure.Results showed that the PTFE aerogels not only had excellent hydrophobicity but also possessed superior acoustic insulation,mechanical strength,thermal insulation,and heat resistance properties.Specifically,the water contact angle is about 140°.The noise reduction coefficient is 0.34 and the average sound absorption coefficient is greater than 88%in the frequency range of 2000-6400 Hz.Meanwhile,the thermal conductivity in the air is about 0.045 W/(m·K),and the initial thermal decomposition temperature is 450℃.More importantly,the PTFE aerogels had excellent temperature and corrosion resistance.Even after extremely thermal and chemical treatment,they remained unchanged porous structure as well as acoustic and thermal insulation properties,which exhibits great potential for application in many harsh environments.
基金financially supported by the Young Scientists Fund of National Natural Science Foundation of China(Grant No.52303106)Research Grants Council of Hong Kong SAR(16200720)+3 种基金Environment and Conservation Fund of Hong Kong SAR(Project No.21/2022)Research Institute of Sports Science and Technology(Project No.P0043535)Research Institute of Advanced Manufacturing(Project No.P0046125)the start-up fund for new recruits of Poly U(Project No.P0038855 and P0038858)。
文摘Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling.While different strategies have been developed to mitigate heat gains,they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport.Here,an anisotropic synergistically performed insulation-radiation-evaporation(ASPIRE)cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport.The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of~8.2℃ and a remarkable peak cooling power of 311 W m^(-2)under direct sunlight.Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation.Moreover,self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days.The synergistic design provides new insights toward high-power,sustainable,and all-weather passive cooling applications.
文摘This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and enhance the gross national product. The process starts by collecting low-cost sheep fleece from farms and processed via a production line, including scouring, plucking, carding, thermal bonding, and packing. The design process involves determining an optimal location, infrastructure, staffing, machinery, environmental impact, and utilities. A final economic analysis is undertaken to estimate the product’s cost, selling price, and break-even point based on the anticipated capital and operational costs. The plant is intended to process 6778 tons of sheep wool annually. The study suggests that Mafraq Industrial City is a perfect location for the plant, and purchasing land and structures is the optimal option. The projected capital cost is 1,416,679 USD, while the anticipated operational costs amount to 3,206,275 USD. Insulation material production is estimated to be 114,756 m3 annually. The material may be manufactured into 1 m wide, 0.05 m thick sheets for 2.02 USD per square meter. Thus, for a 10-year plant, a 2.47 USD/m2 selling price breaks even in one year.
基金supported in part by the National Natural Science Foundation of China under Grant 52277139 and 52367014in part by the Guangxi Science Fund for Distinguished Young Scholars under Grant 2024GXNSFFA999017.
文摘Fluorination is a critical surface modification technique for enhancing the electrical performance of composite insulators.This study employs molecular simulations to examine the microstructure and space charge behavior of fluorinated and non-fluorinated silicone rubber under an electric field,with experimental validation.The results show that fluorinated silicone rubber exhibits lower total energy,higher polarization,and stronger dipole moments compared to its non-fluorinated counterpart,shifting the material from an insulating to a conductive state.Under lower electric field strengths,the carbon-silicon bonds in fluorinated silicone rubber are longer,but it maintains geometric stability under higher fields.The energy gap changes across different fluorination modes and varies with electric field strength,indicating that fluorination affects conductivity differently at various field intensities.Both fluorination methods improve conductivity in the 0–3.8 V/nm range,with substitutional fluorination showing superior performance between 3.8 and 8.9 V/nm.Above 9.1 V/nm,fluorination maximizes conductivity.The fluorinated samples exhibit a greater redshift at higher electric fields,resulting in enhanced conductivity and improved surface charge distribution.These findings offer insights into the microscopic effects of fluorination on silicone rubber’s electrical properties,while experiments confirm that fluorination increases hydrophobicity and boosts DC flashover voltage,further enhancing the material’s performance.
基金supported by the Beijing Natural Science Foundation(Nos.2242004 and 2232027)the National Natural Science Foundation of China(No.22171021)the China Postdoctoral Science Foundation(No.2023M730245).
文摘Radical anions of electron-deficient perylene diimides(PDI)are attractive near-infrared(NIR)absorbers for photothermal conversion;however,their stability is often compromised by strong aggregation and reoxidation in air.Herein,we present a class of bacterial composites hybridized with a newly synthesized doubly-strapped PDI cyclophane,termed“Gemini Box”(GBox-3^(4+)),which features air-stable PDI radicals for NIR photothermal conversion.The effective spatial isolation provided by the double-sided cationic molecular straps allows GBox-3^(4+)to completely suppress chromophore aggregation,even in concentrated aqueous solutions up to 2 mmol/L,thereby preserving its characteristic fluorescence for live-cell imaging.After incubation of bacteria with GBox-3^(4+),the radical species PDI·-have been found to stably exist in the bacterial composites under ambient conditions,both in aqueous suspension and solid forms.Further experiments demonstrate that the air stability of the radical species relies on the simultaneous presence of the doubly-strapped PDI dye and the bacteria.Moreover,the dye-bacterial composites exhibited an high-efficiency NIR photothermal effect with high durability,enabling their application as photothermal agents for seawater desalination.This work provides a new access to the in situ fabrication of photothermal materials from biomass,relying on the rational molecular design and the unique microenvironment of bacteria.
基金supported by the National Natural Science Foundation of China(52372279,52103071,52203322,52473289,52303220)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities in China,FRF-IDRY-GD22-001)。
文摘The advancement of sophisticated smart windows exhibiting superior thermoregulation capabilities in both solar spectrum and long-wave infrared range maintains a prominent objective for researchers in this field.In this study,a Janus window is proposed and prepared based on polymer-stabilized liquid-crystal films/thermochromic materials.It can achieve switchable front long-wave infrared emissivity(ε_(Front))and solar modulation ability(ΔT_(sol))through dynamic flipping,making it suitable for different seasonal energy-saving requirements.Outdoor experiments show that under daytime illumination,the indoor temperature decreases by 8℃,and the nighttime temperature drops by 5℃.MATLAB simulation calculations indicate that the daytime cooling power is 93 W m^(-2),while the nighttime cooling power reaches 142 W m^(-2).Interestingly,by modifying the conductive layer,it can effectively shield electromagnetic radiation(within the X-band frequency range(8.2-12.4)GHz).Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer polymer-stabilized liquid crystal,poly(N-isopropyl acrylamide),and normal glass when applied in different climate zones.This research presents a compelling opportunity for the development of sophisticated smart windows characterized by exceptional thermoregulation capabilities.
文摘Polyester staple fibres are widely used in the US textile industry,particularly in clothing,home textiles,and industrial applications,They are commonly blended with cotton to create affordable,durable fabrics used in items like casual wea r,bed linens,and towels.In addition to their use in fashion,polyester staple fibres are integral to the automotive sector for upholstery and insulation.The US has also seen a rise in the use of recycled polyester,driven by sustainability trends.
基金supported by the National Natural Science Foundation of China(No.52077151)the State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE23208)the Key Laboratory of Engineering Dielectrics and Its Application,Ministry of Education(No.KFM202203).
文摘This study focuses on the electrical properties and microstructure of polypropylene(PP)-based blends used for cable insulation in nuclear power plants(NPPs).The PP-based blend,comprising isotactic PP and propylene-based elastomer(PBE)at concentrations ranging from 0 to 50 wt%,underwent a melt blending process and subsequent cobalt-60 gamma-ray irradiation with doses ranging from 0 to 250 kGy.Electrical conductivity,trap distribution,and alternating(AC)breakdown strength were chosen to assess the insulation performance.These results indicate that the addition of PBE significantly improves the electrical properties of PP under irradiation.For PP,the electrical conductivity increased with irradiation,whereas the trap depth and breakdown strength decreased sharply.Conversely,for the blend,these changes initially exhibit opposite trends.When the irradiation was increased to 250 kGy,the AC breakdown strength of the blend improved by more than 21%compared to that of PP.The physical and chemical structures of the samples were investigated to explore the improvement mechanisms.The results offer insights into the design of new cable-insulation materials suitable for NPPs.
基金Funded by Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z221100006722022)。
文摘We synthesized tungsten-doped vanadium dioxide(W-VO_(2))particles via a one-step hydrothermal method,followed by their integration with antimony-doped tin oxide(ATO)nanoparticles to formulate a composite coating.Subsequently,the VO_(2)/ATO composite coating was fabricated through a spin-coating process.The impact of varying W-VO_(2) content and coating thickness on the performance of the composite coatings was systematically investigated by employing X-ray diffraction,particle size distribution analysis,spectrometry,and other pertinent test methodologies.Our findings revealed that an escalation in both W-VO_(2) content and coating thickness retained high transmittance in the near-infrared band at lower temperatures.However,as the temperature increased,a notable reduction in transmittance in the near-infrared band was observed,alongside a slight decrease in transmittance within the visible band.Remarkably,when the W-VO_(2) content reached 5%and the coating thickness was 1253 nm,the transmittance of the composite coating surpassed 80%.Furthermore,the heat insulation effect achieved a remarkable 10.0℃increase.Consequently,the synthesized composite coating demonstrates significant potential for smart glass applications,particularly in the realm of heat-insulating glass.
基金supported by the National Natural Science Foundation of China(No.52175341)Shandong Provincial Natural Science Foundation(No.ZR2022JQ24)+2 种基金Funding Project of Jinan City's New Twenty Items for Colleges and Universities(No.202333038)Excellent Young Team Project of Central Universities(No.2023QNTD002)Qingdao Key Technology Research and Industrialization Demonstration Project(No.24-1-2-qljh-10-gx).
文摘Poly(vinylidene fluoride)(PVDF)foam has received widespread attention due to its high strength,and excellent combination of flame-retardancy,antibacterial performance,and chemical stability.However,the foaming ability of conventional PvDF is severely limited by its rapid crystallization kinetics and poor melt strength.Although ultra-high molecular weight PVDF(H-PVDF)theoretically offers prolonged melt elasticity favorable for foaming,the extremely high melt viscosity poses substantial processing challenges,and its foaming behavior has remained largely unexplored.To address these issues,this study proposes a novel fabrication strategy combining solvent casting with microcellular foaming to prepare H-PVDF foams.Dynamic mechanical analysis and differential scanning calorimetry reveal that extensive chain entanglements in H-PVDF impose constraints on crystallization and significantly enhance melt strength.By tuning the processing parameters,the distinctive foaming be-havior of H-PVDF under various conditions is systematically elucidated.Remarkably,a record-high expansion ratio of 55.6-fold is achieved,ac-companied by a highly uniform and fine cellular structure.The resulting H-PVDF foams exhibit a low thermal conductivity of 31.8 mW·m^(-1).K^(-1),while retaining excellent compressive strength,flame-retardancy,and hydrophobicity.These outstanding properties highlight the great potential of H-PVDF foams as the thermal insulation materials for applications in aerospace,energy infrastructure,and other extreme environments.