期刊文献+
共找到1,602篇文章
< 1 2 81 >
每页显示 20 50 100
Dynamic performance and energy efficiency of reflective and insulative composite coating on building exterior wall 被引量:5
1
作者 Guangpeng Zhang Huijun Wu +4 位作者 Jia Liu Jianming Yang Huakun Huang Yujie Ding Lei Xie 《Building Simulation》 SCIE EI CSCD 2023年第12期2245-2259,共15页
Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and ... Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes. 展开更多
关键词 reflective and insulative composite coating exterior wall building insulation solar reflectance thermal conductivity
原文传递
Hybridization Gap and Edge States in Strained-Layer InAs/In_(0.5)Ga_(0.5)Sb Quantum Spin Hall Insulator
2
作者 Wenfeng Zhang Peizhe Jia +4 位作者 Wen-kai Lou Xinghao Wang Shaokui Su Kai Chang Rui-Rui Du 《Chinese Physics Letters》 2026年第1期179-183,共5页
The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges be... The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain. 展开更多
关键词 strained layer quantum spin hall insulators qshis InAs Ga Sb edge states quantum wells qws be controlled molecular beam epitaxial growth hybridization gap quantum spin Hall insulator
原文传递
Superelastic and Washable Micro/Nanofibrous Sponges Based on Biomimetic Helical Fibers for Efficient Thermal Insulation
3
作者 Fengjin Yang Zhifei Wang +7 位作者 Wei Zhang Sai Wang Yi‑Tao Liu Fei Wang Roman ASurmenev Jianyong Yu Shichao Zhang Bin Ding 《Nano-Micro Letters》 2026年第2期170-182,共13页
Extreme cold weather seriously harms human thermoregulatory system,necessitating high-performance insulating garments to maintain body temperature.However,as the core insulating layer,advanced fibrous materials always... Extreme cold weather seriously harms human thermoregulatory system,necessitating high-performance insulating garments to maintain body temperature.However,as the core insulating layer,advanced fibrous materials always struggle to balance mechanical properties and thermal insulation,resulting in their inability to meet the demands for both washing resistance and personal protection.Herein,inspired by the natural spring-like structures of cucumber tendrils,a superelastic and washable micro/nanofibrous sponge(MNFS)based on biomimetic helical fibers is directly prepared utilizing multiple-jet electrospinning technology for high-performance thermal insulation.By regulating the conductivity of polyvinylidene fluoride solution,multiple-jet ejection and multiple-stage whipping of jets are achieved,and further control of phase separation rates enables the rapid solidification of jets to form spring-like helical fibers,which are directly entangled to assemble MNFS.The resulting MNFS exhibits superelasticity that can withstand large tensile strain(200%),1000 cyclic tensile or compression deformations,and retain good resilience even in liquid nitrogen(-196℃).Furthermore,the MNFS shows efficient thermal insulation with low thermal conductivity(24.85 mW m^(-1)K^(-1)),close to the value of dry air,and remains structural stability even after cyclic washing.This work offers new possibilities for advanced fibrous sponges in transportation,environmental,and energy applications. 展开更多
关键词 ELECTROSPINNING Micro/nanofibrous sponge Hierarchical structure SUPERELASTICITY Thermal insulation
在线阅读 下载PDF
Cell Phf8[ˈfeɪt]control:Epigenetic regulation during oligodendroglial development
4
作者 Marco Kremp Michael Wegner 《Neural Regeneration Research》 2026年第3期1110-1111,共2页
Oligodendrocytes and their cell-intrinsic gene regulatory network:Oligodendrocytes(OLs)are the myelinating glial cells of the vertebrate central nervous system.They are responsible for insulating neuronal axons with a... Oligodendrocytes and their cell-intrinsic gene regulatory network:Oligodendrocytes(OLs)are the myelinating glial cells of the vertebrate central nervous system.They are responsible for insulating neuronal axons with a lipid-rich myelin sheath,which enables the saltatory conduction of action potentials.During development,oligodendrocyte progenitor cells(OPCs)emerge from neural stem cells in the ventricular zone.They then proliferate,increase their number,and migrate to their final destination where they encounter unmyelinated neuronal axons and differentiate in a stepwise fashion into myelinating oligodendrocytes(mOLs)under the influence of environmental stimuli. 展开更多
关键词 insulating neuronal axons myelinating glial cells neural stem cells oligodendroglial development progenitor cells opcs emerge CELL epigenetic regulation saltatory conduction action potentialsduring
暂未订购
Topological Corner States due to Boundary Defects
5
作者 Yiqi Zhang Yuwei Hu +1 位作者 Yongdong Li Ce Shang 《Chinese Physics Letters》 2026年第1期44-48,共5页
In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete bounda... In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete boundary unit cells(i.e.,boundary defects)even though the bulk polarization is zero,which challenges the conventional understanding of HOTIs.Here,based on a Kekul´e-distorted honeycomb lattice with incomplete unit cells,we reveal that incomplete unit cells exhibit fractional charges through the analysis of Wannier centers by developing a compensation method and creating the concept of Wannier center domain(WCD)which is the smallest region that one Wannier center occupies.This method compensates for the missing parts of these boundary incomplete unit cells with additional WCDs to make them complete.The compensated WCDs automatically carry the corresponding charge,and this charge together with that of the incomplete unit cell constitutes the total charge of the complete unit cell after compensation.We conclude that the emergence of corner states is attributed to the filling anomaly,which is a fundamental mechanism.Our results refresh the understanding of HOTIs,especially those with structural discontinuities,and provide a novel design for topological states which have application value in producing optical functional devices. 展开更多
关键词 unit cellswe higher order topological insulators topological corner states boundary unit cells ieboundary incomplete unit cells bulk polarization index fractional charges emergence topological states
原文传递
Energy and Buildings
6
《建筑节能(中英文)》 2026年第1期32-32,共1页
https://www.sciencedirect.com/journal/energy-and-buildings/vol/350/suppl/CV olume 350,1 January 2026[OA]( 1)Rooftop agrivoltaic powered onsite hydrogenp roduction for insulated gasochromic smart glazing and hydrogen v... https://www.sciencedirect.com/journal/energy-and-buildings/vol/350/suppl/CV olume 350,1 January 2026[OA]( 1)Rooftop agrivoltaic powered onsite hydrogenp roduction for insulated gasochromic smart glazing and hydrogen vehicles:A holistic approach to sustainabler esidential building by Shanza Neda Hussain,Aritra Ghosh,Article 116675 A bstract:The study focused on designing a sustainable buildingi nvolving rooftop agrivoltaics,advanced glazing technologies ando nsite hydrogen production for a residential property in Birmingham,UK where green hydrogen produced by harnessinge lectricity generated by agrivoltaics system on rooftop of the building is employed to change the transparency of vacuum gasochromic glazing and refuel hydrogen-powered fuel cell vehicle using storage hydrogen for a sustainable building approach. 展开更多
关键词 insulated gasochromic smart glazing sustainable building hydrogen powered fuel cell vehicle hydrogen vehicles rooftop agrivoltaicsadvanced glazing technologies hydrogen production gasochromic smart glazing designing sustainable buildingi
在线阅读 下载PDF
New neutralization method for measuring the secondary electron yield of insulative material 被引量:2
7
作者 Kaile Wen Shulin Liu +3 位作者 Baojun Yan Yuman Wang Binting Zhang Zhiyan Cai 《Radiation Detection Technology and Methods》 CSCD 2020年第3期319-326,共8页
Purpose The limitation of the traditional bias neutralization method is proved,and a new neutralization method is proposed to measure the secondary electron yield of insulating materials.Method While measuring the sec... Purpose The limitation of the traditional bias neutralization method is proved,and a new neutralization method is proposed to measure the secondary electron yield of insulating materials.Method While measuring the secondary electron yield of an insulating sample using the bias neutralization method,the region of an insulating sample irradiated by an electron beam may not be neutralized,because electrons enforced by the bias are not returned to the proper location.The above-mentioned phenomenon is verified by a simulation.To achieve proper neutralization,we propose a method of moving the electron beam to irradiate the metal sample stage without applying a bias voltage,which generates many low-energy electrons around the insulating sample.Those electrons are automatically attracted to the positively charged region of the insulating sample surface and rejected if enough electrons accumulated on the surface.Result and conclusion The limitation of neutralization of bias voltage was verified by simulation,and the new neutralization method was proved to be effective through experiments. 展开更多
关键词 Secondary electron yield MEASUREMENT Insulators Charge neutralization
原文传递
Factors Affecting the Thermal Conductivity of Vacuum-Insulated Panels:a Review 被引量:1
8
作者 RONG Xian YANG Yuqi ZHANG Jianxin 《材料导报》 北大核心 2025年第13期278-290,共13页
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to... In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life. 展开更多
关键词 vacuum insulation panel thermal conductivity thermal insulation energy conservation
在线阅读 下载PDF
Janus structure design of polyimide composite foam for absorption-dominated EMI shielding and thermal insulation 被引量:2
9
作者 Ruixing Hao Yaqi Yang +3 位作者 Peiyou He Yaqing Liu Guizhe Zhao Hongji Duan 《Journal of Materials Science & Technology》 2025年第3期317-326,共10页
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom... In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft. 展开更多
关键词 Electromagnetic interference shielding(EMI) Thermal insulation POLYIMIDE Janus structure Low reflection
原文传递
Experimental Study on Electric Properties of Carbon Fiber Reinforced Concrete
10
作者 张滇军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期546-550,共5页
According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber... According to the phenomenon that the physical properties have,a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area, location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility. 展开更多
关键词 carbon fiber reinforced concrete(CFRC) RESISTANCE curing age insulative area insulative location insulative quantity
在线阅读 下载PDF
Moving Towards the Reliability-oriented Design of Hairpin Winding for EV Traction Machines Driven by SiC Inverter 被引量:1
11
作者 Xiaowei Ju Yue Zhang +2 位作者 Zhiwei Xue Yuan Cheng Shumei Cui 《CES Transactions on Electrical Machines and Systems》 2025年第1期26-35,共10页
With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are r... With the development of high-frequency and highvoltagetraction machines(TM)incorporating hairpin windings(HW)and SiC inverters for electric vehicles(EV),both theinterturn voltage stress and temperature within HW are rising,increasing the risk of partial discharge(PD),and presentingsignificant challenges to insulation safety.Therefore,this paperaddresses this issue and proposes potential solutions.Firstly,thepaper examines an 8-pole,48-slot,6-layer HW TM to highlightthe unique characteristics of this winding structure,and explainsthe uneven distribution of interturn voltage stress andtemperature.Subsequently,a high-frequency equivalent circuitmodel of the HW TM prototype is developed.The error ofsimulation and experiment is only 5.7%,which proves theaccuracy of the model.Then,an improved HW scheme isproposed to lower the maximum voltage stress by 29.3%.Furthermore,the temperature distribution of HW TM isanalyzed to facilitate a detailed examination of the impact oftemperature on insulation PD.Finally,the partial dischargeinception voltage(PDIV)of interturn insulation,consideringtemperature effects,is calculated and verified throughexperiment.The paper proposes a reliability-oriented designmethod and process for HW TM.It demonstrates that thereliability-oriented design can achieve PD-free performance inthe design stage of HW. 展开更多
关键词 Hairpin winding INSULATION Electric-thermal stress Partial discharge SiC inverter
在线阅读 下载PDF
Metal ion-crosslinked thermoconductive sugar-functionalized graphene fluoride-based cellulose papers with enhanced mechanical properties and electrical insulation 被引量:1
12
作者 Tae-Hyeong Jeong Pyeong-Jun Park +3 位作者 Sebastian Anand Dineshkumar Mani Jun-Beom Kim Sung-Ryong Kim 《Journal of Materials Science & Technology》 2025年第11期204-213,共10页
Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crossl... Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crosslinking strategy to strengthen sugarfunctionalized graphene fluoride(SGF)and cellulose nanofibers(CNF)by hydrogen bonding and metal ion crosslinking that leads to simultaneous enhancements in thermal conductivity and mechanical properties.The facile sugarassisted ball-milling exfoliation method was developed to achieve the exfoliation of graphite fluoride and hydroxyl group functionalization on the surface of graphene fluoride.Thanks to the good dispersibility of the SGF sheets in water,the flexible SGF/CNF composite papers with hydrogen bonding were prepared via vacuum-assisted filtration.We introduced hydrogen bonding and metal ion crosslinking into SGF/CNF papers to obtain densely packed composite papers.Ca^(2+)or Al^(3+)ion-crosslinked SGF/CNF papers exhibited superior thermal and mechanical properties owing to hydrogen bonding and metal ion crosslinking.SGF/CNF-Ca^(2+)and SGF/CNF-Al^(3+)papers at 50 wt%of SGF yield in-plane thermal conductivities of 72.93 and 75.02 W m^(-1) K^(-1),and tensile strengths of 121.5 and 135.7 MPa,respectively.A thermal percolation value was observed at 12.6 vol%of SGF filler content.In addition,the SGF/CNF papers exhibited electrical insulation properties.These remarkable characteristics of the metal ion-crosslinked SGF/CNF papers are attributed to the densely packed structures caused by the strong interfacial interactions from hydrogen bonding as well as metal ion-crosslinking that could promote phonon transport.High-performance metal ion-crosslinked SGF/CNF papers with these fascinating advantages offer great potential for the thermal management of flexible electronics. 展开更多
关键词 Thermal conductivity Mechanical robustness Metal ion-crosslinking Graphenefluoride Electrical insulation
原文传递
Nacre-inspired composite papers with enhanced mechanical and electrical insulating properties:Assembly of aramid papers with aramid nanofibers and basalt nanosheets 被引量:1
13
作者 Dexian Ji Meiyun Zhang +6 位作者 Hao Sun Yuming Lyu Shelley Lymn Cormier Cong Ma Hui Zhang Yonghao Ni Shunxi Song 《Journal of Materials Science & Technology》 2025年第12期283-295,共13页
Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the ... Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment. 展开更多
关键词 Nacre-inspired structure Composite materials Aramid nanofibers Basalt nanosheets Electrical insulation Mechanical strength
原文传递
A layered aerogel composite with silica fibers,SiC nanowires,and silica aerogels ternary networks for thermal insulation at high-temperature 被引量:1
14
作者 Qiong Wu Mengmeng Yang +10 位作者 Zhaofeng Chen Le Lu Zhudan Ma Yang Ding Longpan Yin Tianlong Liu Manna Li Lixia Yang Bin Hou Huanjun Zhu Sheng Cui 《Journal of Materials Science & Technology》 2025年第1期71-80,共10页
Due to excellent thermal insulation performance at room temperature and ultralow density,silica aero-gels are candidates for thermal insulation.However,at high temperatures,the thermal insulation prop-erty of silica a... Due to excellent thermal insulation performance at room temperature and ultralow density,silica aero-gels are candidates for thermal insulation.However,at high temperatures,the thermal insulation prop-erty of silica aerogels decreased greatly caused by transparency to heat radiation.Opacifiers introduced into silica sol can block heat radiation yet destroy the uniformity of aerogels.Herein,we designed and prepared a silica aerogel composite with oriented and layered silica fibers(SFs),SiC nanowires(SiC_(NWs)),and silica aerogels,which were prepared by papermaking,chemical vapor infiltration(CVI),and sol-gel respectively.Firstly,oriented and layered SFs made still air a wall to block heat transfer by the solid phase.Secondly,SiC_(NWs) were grown in situ on the surface of SFs evenly to weave into the network,and the network reduced the gaseous thermal conductivity by dividing cracks in SFs/SiC_(NWs)/SA.Thirdly,SiC_(NWs) weakened the heat transfer by radiation at high temperatures.Therefore,SFs/SiC_(NWs)/SA presented remarkable thermal insulation(0.017 W(m K)^(-1) at 25℃,0.0287 W(m K)^(-1) at 500℃,and 0.094 W(m K)^(-1) at 1000℃).Besides,SFs/SiC_(NWs)/SA exhibited remarkable thermal stability(no size transform after being heat treated at 1000℃ for 1800 s)and tensile strength(0.75 MPa).These integrated properties made SFs/SiC_(NWs)/SA a promising candidate for highly efficient thermal insulators. 展开更多
关键词 Silica aerogel Thermal insulation SiC nanowires Layered structure
原文传递
Ferroelectric domain engineering of Lithium niobate 被引量:1
15
作者 Jackson J.Chakkoria Aditya Dubey +1 位作者 Arnan Mitchell Andreas Boes 《Opto-Electronic Advances》 2025年第2期46-79,共34页
Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properti... Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices. 展开更多
关键词 lithium niobate FERROELECTRIC domain engineering lithium niobate on insulator domain visualization periodic poling quasi-phase matching acoustic
在线阅读 下载PDF
Construction and application of composite insulation scheme in the perioperative period of patients undergoing laparoscopic colorectal cancer surgery 被引量:1
16
作者 Ling-Jun Du Yan-Guang Su +2 位作者 Zhu-Hua Shen Yan-Li Zhang Yong-Yi Ma 《World Journal of Gastrointestinal Surgery》 2025年第5期266-274,共9页
BACKGROUND Elderly patients undergoing laparoscopic colorectal cancer surgery are at high risk for hypothermia-related complications.This study explores the efficacy of periop-erative composite insulation intervention... BACKGROUND Elderly patients undergoing laparoscopic colorectal cancer surgery are at high risk for hypothermia-related complications.This study explores the efficacy of periop-erative composite insulation interventions in maintaining normothermia and reducing postoperative risks in this vulnerable group.AIM To evaluate the efficacy of perioperative composite insulation in older patients undergoing colorectal cancer surgery.METHODS We selected 100 older patients who underwent laparoscopic surgery for colorectal cancer at Huzhou Central Hospital from September 2023 to April 2024.Using a random number table,patients were divided into a control group and inter-vention group of 50 patients each.After returning to the regular ward,the con-ventional group received traditional insulation intervention measures,while the intervention group received composite insulation nursing intervention.We ob-served and recorded postoperative blood pressure and heart rate changes,as well as postoperative anesthesia recovery time and incidence of complications.RESULTS The statistical results showed significant differences(P<0.05)in heart rate changes and systolic blood pressure between the two groups.There was a sig-nificant change in heart rate between the groups immediately after surgery and at 15 and 30 minutes after surgery(P<0.05).The heart rate and systolic blood pressure of the intervention group were significantly lower than those of the control group at 15 and 30 minutes after surgery(P<0.05).The rewarming time of the intervention group was shorter than that of the control group,and the overall incidence of postoperative complications was significantly lower than that of the control group(P<0.05).CONCLUSION For elderly patients undergoing laparoscopic colorectal cancer surgery,a composite insulation intervention during the perioperative period can maintain body temperature,reduce postoperative stress,and significantly reduce the incidence of hypothermia and related complications. 展开更多
关键词 Laparoscopic surgery Composite insulation scheme Colorectal cancer Elderly patients Perioperative care Hypothermia prevention
暂未订购
Like a G6-nal:transcriptional control of G-protein coupled receptors during oligodendroglial development
17
作者 Tim Aberle Michael Wegner 《Neural Regeneration Research》 SCIE CAS 2025年第7期2001-2002,共2页
Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken u... Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken up by oligodendrocytes.Oligodendrocytes are marked by the expression of the lineage determinants Sox10 and Olig2 and arise from oligodendrocyte precursor cells(OPCs)during embryonal stages.While the majority of OPCs differentiate into mature oligodendrocytes when nearby axonal segments require myelination,a small subpopulation of OPCs persist as a progenitor pool.Therefore,the timing of myelination and maintenance of the OPC pool both need to be precisely regulated.Different transcription factors either positively or negatively affect oligodendrocyte differentiation and maintenance of the OPC pool as components of a complex gene regulatory network(reviewed in Sock and Wegner,2021).Network activity is additionally influenced by extracellular signaling molecules that bind to receptors on the oligodendroglial cell surface and activate intracellular signaling pathways.How the receptors are linked to the network is poorly understood so far,but pivotal to understanding the overall regulation of central nervous system(CNS)myelination in response to environmental cues.Relevant insights were recently gained for Gpr37(Schmidt et al.,2024),a G-protein coupled receptor(GPCR)with known relevance in differentiating oligodendrocytes(Yang et al,2016). 展开更多
关键词 gained INSULATION conduction
在线阅读 下载PDF
Second-Order Topological Insulators in 2D Electronic Materials
18
作者 FENG Xiao-ran NIU Cheng-wang +1 位作者 HUANG Bai-biao DAI Ying 《物理学进展》 北大核心 2025年第1期1-31,共31页
Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applica... Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized. 展开更多
关键词 second order topological insulator corner state 2D electronic material
在线阅读 下载PDF
Substrate Design and Multistate Manipulation of Ferroelectric Topological Insulators
19
作者 Xinyang Gao Bao Zhao +2 位作者 Yanxing Zhang Zongxian Yang Ruqian Wu 《Chinese Physics Letters》 2025年第11期222-237,共16页
Ferroelectric topological insulators realized in heterostructures of two topologically trivial two-dimensional materials have recently attracted significant interest. Using first-principles calculations combined with ... Ferroelectric topological insulators realized in heterostructures of two topologically trivial two-dimensional materials have recently attracted significant interest. Using first-principles calculations combined with topological quantum chemistry, we investigate bilayer α-In_(2) Se_(3)(2 L-In_(2) Se_(3)) in van der Waals heterostructures with XSe(X = Ga, In, Tl) substrates within space group P 3m1(No. 156). We show that the emergence of ferroelectricity-driven topological phase transitions in these systems is dictated by fundamental symmetry principles rather than material-specific effects. The band bending at the XSe/2 L-In_(2) Se_(3) interface enables topological band inversions, with higher-electron-affinity substrates such as GaSe and TlSe favoring the transition. Remarkably, GaSe/2 L-In_(2) Se_(3) exhibits a reversible transition between topological and trivial insulating phases upon polarization switching, while TlSe/2 L-In_(2) Se_(3) undergoes sequential transitions from a topological insulator to a trivial insulator and eventually to a metallic state. This multistate manipulation highlights a viable route for designing tunable, low-power, multi-functional electronic devices. 展开更多
关键词 ferroelectric topological insulators symmetry principles van der waals heterostructures HETEROSTRUCTURES topological insulators band bending topological quantum chemistry FERROELECTRICITY
原文传递
Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators
20
作者 Zijian Ma Hongyi Yu 《Chinese Physics B》 2025年第9期519-525,共7页
In moiré-patterned van der Waals structures of transition metal dichalcogenides,correlated insulators can form under integer and fractional fillings,whose transport properties are governed by various quasiparticl... In moiré-patterned van der Waals structures of transition metal dichalcogenides,correlated insulators can form under integer and fractional fillings,whose transport properties are governed by various quasiparticle excitations including holons,doublons and interlayer exciton insulators.Here we theoretically investigate the nearest-neighbor inter-site hoppings of holons and interlayer exciton insulators.Our analysis indicates that these hopping strengths are significantly enhanced compared to that of a single carrier.The underlying mechanism can be attributed to the strong Coulomb interaction between carriers at different sites.For the interlayer exciton insulator consisting of a holon and a carrier in different layers,we have also obtained its effective Bohr radius and energy splitting between the ground and the first-excited states. 展开更多
关键词 correlated insulator holon interlayer exciton insulator moirépattern
原文传递
上一页 1 2 81 下一页 到第
使用帮助 返回顶部