This study examines the development of loose-fill thermal insulation materials derived from annual plant residues,such as wheat straw,water reeds,and corn stalks,processed using the chemimechanical pulping(CMP)techniq...This study examines the development of loose-fill thermal insulation materials derived from annual plant residues,such as wheat straw,water reeds,and corn stalks,processed using the chemimechanical pulping(CMP)technique.The chopped plants were soda-cooked for 30 min,varying NaOH concentration(2%–8%on a dry basis of biomass),and mechanically refined using different disc types.The CMPprocess enhances the homogeneity and stability of defibratedmaterial,yielding improved insulation properties compared to untreated chopped rawmaterials.Chemical analysis revealed that CMP increases cellulose content and reduces lignin levels,enhancing water retention and vapor diffusion properties.Settlement tests confirmed that CMP materials are more resistant to compaction under vibration,maintaining long-term performance.Additionally,the CMP enables the production of lightweight materials that require less resource consumption while achieving comparable thermal insulation performance.The investigated biobased materials offer a sustainable alternative to conventional insulation,with competing thermal conductivity values(0.041-0.046 W/mK)at the settlement-resistant bulk density level of 60 kg/m^(3).The thermal conductivity of CMP materials remains minimally affected.However,the resulting fibers demonstrate significant advantages in stability and material efficiency.This highlights its suitability for loose-fill applications to improve the sustainability of the construction.Using renewable plant residues,CMP-based insulation materials align with circular economy principles and contribute to environmental sustainability.This research underscores the potential of CMP materials to reduce greenhouse gas emissions,optimize resource use,and promote eco-friendly building practices.展开更多
This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and e...This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and enhance the gross national product. The process starts by collecting low-cost sheep fleece from farms and processed via a production line, including scouring, plucking, carding, thermal bonding, and packing. The design process involves determining an optimal location, infrastructure, staffing, machinery, environmental impact, and utilities. A final economic analysis is undertaken to estimate the product’s cost, selling price, and break-even point based on the anticipated capital and operational costs. The plant is intended to process 6778 tons of sheep wool annually. The study suggests that Mafraq Industrial City is a perfect location for the plant, and purchasing land and structures is the optimal option. The projected capital cost is 1,416,679 USD, while the anticipated operational costs amount to 3,206,275 USD. Insulation material production is estimated to be 114,756 m3 annually. The material may be manufactured into 1 m wide, 0.05 m thick sheets for 2.02 USD per square meter. Thus, for a 10-year plant, a 2.47 USD/m2 selling price breaks even in one year.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure....As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials.展开更多
ZrO_(2)-strengthened porous mullite insulation materials were prepared by foaming technology utilizing ZrSiO_(4) and Al_(2)O_(3) as primary materials and Y_(2)O_(3) as an additive.The effects of Y_(2)O_(3) contents on...ZrO_(2)-strengthened porous mullite insulation materials were prepared by foaming technology utilizing ZrSiO_(4) and Al_(2)O_(3) as primary materials and Y_(2)O_(3) as an additive.The effects of Y_(2)O_(3) contents on the phase composition,microstructure,mechanical properties,and heat conductivity of the porous mullite insulation materials were investigated.A suitable Y_(2)O_(3) content could promote phase transition of monoclinic ZrO_(2)(m-ZrO_(2))to tetragonal ZrO_(2)(t-ZrO_(2)),reduce pore size,and improve the strengths of as-prepared specimens.The cold crushing strength and bending strength of as-prepared specimens with a 119µm spherical pore size using 6 wt.%Y_(2)O_(3) were 35.2 and 13.0 MPa,respectively,with a heat conductivity being only 0.248 W/(m K).展开更多
Using carbide slag as the calcareous materials, xonotlite thermal insulation material was successfully prepared via dynamic hydrothermal synthesis. The experimental results show that the xonotlite thermal insulation m...Using carbide slag as the calcareous materials, xonotlite thermal insulation material was successfully prepared via dynamic hydrothermal synthesis. The experimental results show that the xonotlite thermal insulation material is made up of large numbers of "chestnut bur shape" particles. Optimum conditions of calcination temperature of carbide slag, synthesis reaction temperature and time, stirring rate, CaO/SiO2 mol ratio, water/solid weight ratio, amount of fiberglass, molding pressures, dryness temperatures and the presence of dispersant (glycol and polyvinyl alcohol) favor the preparation of xonotlite thermal insulation material. The evaluation of xonotlite thermal insulation material reveals that the product is ultra-light and excellent in physical performances. Such a little amount of impurities in carbide slag has no effect on the phase, morphology, stability at high temperature and physical performances of products.展开更多
A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. ...A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building.展开更多
A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter ...A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter as nanoparticles with the formation of the SiO Ti bonds.The growth mechanism accounting for the formation of the TiO2 nanolayers was proposed.The morphology,composition,thermal insulation properties,and visible-near infrared(VIS-NIR)refl ectance of the HGMs/TiO2 composite hollow spheres were characterized.The VIS-NIR reflectance of the HGMs/TiO2 composite hollow spheres increased by more than 30%compared to raw HGMs.The thermal conductivity of the particles is 0.058 W/(m K).The result indicates that the VIS-NIR reflectance of the composite hollow spheres is strongly influenced by the coating of TiO2.The composite hollow spheres were used as the main functional filler to prepare the organic-inorganic composite coatings.The glass substrates coated by the organic-inorganic coatings had lower thermal conductivity and higher near infrared reflectivity.Therefore,the HGMs/TiO2 composite hollow spheres can reflect most of the solar energy and effectively keep out the heat as a thermal insulation coating for energy-saving constructions.展开更多
This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an ex...This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an excellent resource for buildings insulation material. A linear regression model is used to predict sheep number for the period (2017-2030). Based on the predicted number of Sheep an estimated annual average production of wool is found for the period (2017-2030) to be (3.586 × 10<sup>3</sup> ton). The average cost per kg of fleece produced is calculated to be 0.39 JD, and the estimated price of fleece per head, if market is available for raw fleece, is 1 JD. Average annual financial losses by farmers are calculated to be (3.743 × 10<sup>6</sup> JD) for the period 2002-2016, and they were estimated to be (9.421 × 10<sup>6</sup> JD) for the years 2017-2030. Physical characteristics of sheep-wool are presented and compared to other competitive insulation materials (polystyrene and rockwool). Sustainability of sheep-wool production to be utilized as an insulation material is found to be an excellent solution to the huge waste of wool with respect to farmers and National income and to the problems associated with environmental impact. Results can be generalized to similar cases worldwide.展开更多
In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregat...In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregates(using high purity magnesia powder as starting material and potassium oleate as the foaming agent),middle grade magnesia powder,calcium aluminate cement,and SiO_(2) micropowder as starting materials,introducing walnut shell powder impregnated with silica sol(short for Sws)as a pore-forming agent.The effects of the Sws addition(0,10%,15%,and 20%,by mass)and the sintering temperature(1300,1350,1400,and 1480℃)on the properties of magnesia insulation materials were studied.The results show that(1)for the specimens fired at 1480℃,when the Sws addition is 10%,the cold compressive strength is 22 MPa;when the Sws addition is 20%,the thermal conductivity is 0.368 W·m^(-1)·K^(-1)(350℃);(2)nano-silica in the silica sol reacts with MgO in the matrix to form forsterite,which encapsulates the pores volatilized from the walnut shell powder and forms closed pores.展开更多
In addressing the challenges of solid waste disposal, this study proposed to utilize electrolytic manganese residue to produce building insulation materials. The research focused on the factors such as precursor mater...In addressing the challenges of solid waste disposal, this study proposed to utilize electrolytic manganese residue to produce building insulation materials. The research focused on the factors such as precursor material ratio, alkali activator ratio, foaming agent and foam stabilizer on the target insulation materials properties. The findings indicated that SiO_(2)/Al_(2)O_(3) molar ratio, SiO_(2)/Na_(2)O molar ratio, and liquid/solid mass ratio impact the mechanical properties of the samples. The best mechanical performance of building structural material samples was characterized by a compressive strength of 11.15 MPa and a density of 1476 kg/m3. The optimal properties for building insulation materials were a thermal conductivity of 0.131–0.104 W/(m·K), compressive strength of 1.49–0.69 MPa, and density of 533–433 kg/m^(3), with a cost of 1722–1294 CNY/m^(3). This research provides a new approach for large-scale electrolytic manganese residue utilization while enhancing insulation performance and reducing energy consumption in buildings, with promising prospects for further engineering development.展开更多
In response to the challenges posed by the transformation of China's reed industry,leading to difficulties in reed utilization,and the significant increment in raw soil from the expansion of urban infrastructure,t...In response to the challenges posed by the transformation of China's reed industry,leading to difficulties in reed utilization,and the significant increment in raw soil from the expansion of urban infrastructure,the authors proposed a novel method of coupling reed with raw soil to produce an ecological building insulation material.The aim is to enhance the thermal comfort of rural buildings and achieve building energy saving.The research has applied theoretical and experimental methods as the core means of exploration for key factors in the preparation of the novel ecological insulation material.These factors include raw soil content and curing methods.Key performance indicators such as thermal insulation,mechanical properties,fire resistance,water resistance,moisture resistance,and acoustic performance have been utilized for evaluation.The research results indicate that the proposed process and method for the preparation of the ecological insulation material effectively utilize reed and raw soil,achieving excellent multi-target performance.When the content of raw soil is in the range of 0-40%,the material's thermal conductivity ranges from 0.097 W/(m·K)to 0.104 W/(m·K),compressive strength from0.70 MPa to 0.79 MPa,water absorption rate from 29.42%to 38.95%,moisture absorption rate from 13.33%to31.48%,and the maximum sound absorption coefficient is 0.80,with a maximum sound insulation of 56.66 dB.Additionally,a non-combustible A-grade fire resistance was achieved.To expand the application space and scope of the novel material,the research team further explored on-site construction material preparation processes and conducted experimental research,focusing on the key aspect of the"curing process".The low temperature curing method of industrial heating blanket was proposed.The research results indicated that the method is feasible.At an environmental temperature of 25℃,with different curing times and curing temperatures,the material's thermal conductivity ranges from 0.089 W/(m·K)to 0.109 W/(m·K),and the compressive strength is between 0.14 MPa and 0.70 MPa,meeting the relevant parameter requirements.This research opens up avenues for other types of biomass with high economic added value applications and can be directly applied to improving the thermal environment of residential buildings,contributing to building energy saving,rural revitalization,and the implementation of dual-carbon strategies in China.展开更多
The seemingly useless reeds are prepared as thermal insulation materials,which not only meet the requirements of environmental sustainability but also enhance the added value of reeds,creating new economic benefits.Th...The seemingly useless reeds are prepared as thermal insulation materials,which not only meet the requirements of environmental sustainability but also enhance the added value of reeds,creating new economic benefits.The hydrophobicity of raw biomass surfaces leads to problems such as weak bonding strength and non-dense structure in the formed materials,as well as issues related to the residual insect infestations on the surface.In this study,reed straw was used as the raw material,and foamed geopolymer was used as the binder to prepare building insulation materials based reed.To improve the interfacial adhesion performance between reed straw and foamed geopolymer,a thermochemical modification method-thermal carbonization,was proposed.In this study,the mechanical properties and hydraulic properties of the studied materials with different degrees of surface thermal modification were tested,especially the fire resistance performance,and weathering resistance performance rarely found in published literature.When the surface thermal modification condition of reed straw was 250℃(30 min),the comprehensive performance of reed-based building insulation materials was the best,when the studied material density was 321.3 kg/m^(3);the compressive strength was 0.59 MPa;the thermal conductivity was 0.101 W/(m·K);the pH was 11.27;the moisture absorption rate was 25.1%,and the compressive strength loss rate in wet-dry cycles was 18.5%.In addition,it had excellent fire resistance performance and weathering resistance performance.This new material can be widely used to improve the thermal insulation of traditional buildings and as sandwich filler in prefabricated buildings,such as preparing insulating walls.展开更多
Due to the global energy shortage,it has become essential to reduce energy consumption in the steelmaking process in order to promote the sustainable development of the metallurgical industry.The limitations of tradit...Due to the global energy shortage,it has become essential to reduce energy consumption in the steelmaking process in order to promote the sustainable development of the metallurgical industry.The limitations of traditional ladle insulation materials were addressed by using kaolin as the main raw material in combination with foam-gelcasting technique for in-situ synthesis of porous anorthite thermal insulation materials.Concurrently,the effects of sintering temperature and time on the composition of the physical phases,microstructure and physical properties were elucidated.The results showed that anorthite was the main phase obtained in sintering temperature range of 1200-1450℃,and edges of anorthite grains were well defined and well developed,presenting a plate-like morphology,which significantly improved mechanical strength of sample.The best overall performance was achieved at a firing temperature of 1400℃ and a holding time of 3 h.Compared to conventional ladle thermal insulation materials,samples developed herein showed excellent performance with a porosity of 63.3%,a compressive strength of 14.51 MPa,and an ultra-low thermal conductivity of only 0.29 W/(m K).展开更多
Polypropylene(PP)-based recyclable materials have attracted tremendous interest for HVDC cable insulation applications due to their superior electrical properties,e.g.,high thermal stability and superior recyclability...Polypropylene(PP)-based recyclable materials have attracted tremendous interest for HVDC cable insulation applications due to their superior electrical properties,e.g.,high thermal stability and superior recyclability.Compared with crosslinked polyethylene(XLPE),PP-based materials exhibit the advantages of not only higher working temperatures but also facile and efficient cable manufacturing with reduced costs,which are highly desirable in HVDC cable manufacturing.Considering their promising advantages,PP-based materials have received significant attention from both academia and industry in the field of HVDC cable insulation.In order to adopt PP as a cable insulation material,the mechanical flexibility of PP should be improved.However,regulations of the mechanical properties inevitably influences the electrical properties of PP.So extensive research has been conducted on the regulation of the mechanical and electrical properties of PP.This review summarizes the research progress on recyclable PP-based materials for HVDC cable insulation applications.Particular attention is placed on the electrical property regulations and material structure-property relationships.The challenges that remain to be addressed and the opportunities for future studies on PP-based recyclable HVDC cable insulation materials are also presented.展开更多
A composite biomass insulation material,which uses geopolymers as adhesives and forestry waste as fillers,was proposed and experimentally tested.The orthogonal experimental method was adopted to analyze the optimum th...A composite biomass insulation material,which uses geopolymers as adhesives and forestry waste as fillers,was proposed and experimentally tested.The orthogonal experimental method was adopted to analyze the optimum theoretical oxide molar ratios and the mass ratio of mixing water to binder(m_(w2)/m__(B))for preparing geopolymers.The influences of curing regimes(including one-stage and two-stage curing methods)and m_(w2)/m_(B) ratios of the insulation materials on mechanical,thermal,and hydraulic performances were also studied by experiment.The results indicated that the optimum combination scheme of preparing geopolymers was molar ratio x_(SiO_(2))/x_(Na_(2)O)=3.3,x_(SiO_(2))/x_(Al_(2)O_(3))=3.2 and m_(w2)/m_(B)=0.5 with the highest mechanical strength of 34.21 MPa.Besides,the best curing conditions of the composite material were the curing temperatures of 85°C and 70°C under the two-stage curing regime,which could achieve the low heat conductivity of 0.123 and 0.125 W/(m·K),and the high mechanical strength of 1.70 MPa and 1.71 MPa,respectively.The optimum m_(w2)/m_(B)ratios of the biomass material were 0.5 to 0.55 with heat conductivity of 0.114 to 0.125 W/(m·K).This novel composite insulation material has satisfying physical performances,which is helpful for achieving building energy conservation.展开更多
In this paper, the influence of different external wall insulation materials on the energy consumption of a newly built apartment in Germany is investigated. Three types of insulation materials commonly used in German...In this paper, the influence of different external wall insulation materials on the energy consumption of a newly built apartment in Germany is investigated. Three types of insulation materials commonly used in Germany including mineral fiber, polyurethane, and vacuum insula- tion panel are chosen for the case studies. An energy analysis model is established to clarify the primary energy use for production of the insulation materials and for building space heating. The calculation results show that the energy consumption for insulation material production increases with the insulation thickness, whereas the energy use for space heating decreases with the insulation thickness. Thus, there exists an optimum thickness to get the lowest total energy consumption for each kind of insulation material. The ascending order of the total energy consumption of the three materials is mineral fiber, polyurethane, and vacuum insulation panel. However, the optimum insulation thicknesses for the three insulation materials show a verse order at a certain heat transfer coefficient of the base envelope. The energy payback time (EPT) is proposed to calculate the payback time of the primary energy use for insulation material production. Mineral fiber has the shortest time, followed by poly- urethane and vacuum insulation panel. The EPTS is 10, 19 and 21 years, respectively when the heat transfer coefficient of the base envelope is 0.2 W/(m2.K). In addition, the simulated results show that the theoretical value and the simulated value are basically identical.展开更多
At present,thermal conductivity is usually taken as a constant value in the calculation of building energy con-sumption and load.However,in the actual use of building materials,they are exposed to the environment with...At present,thermal conductivity is usually taken as a constant value in the calculation of building energy con-sumption and load.However,in the actual use of building materials,they are exposed to the environment with continuously changing temperature and relative humidity.The thermal conductivity of materials will inevitably change with temperature and humidity,leading to deviations in the estimation of energy consumption in the building.Therefore,in this study,variations in the thermal conductivity of eight common building insulation materials(glass wool,rock wool,silica aerogel blanket,expanded polystyrene,extruded polystyrene,phenolic foam,foam ceramic and foam glass)with temperature(in the range of 20-60°C)and relative humidity(in the range of 0-100%)were studied by experimental methods.The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maxi-mum growth rates from 3.9 to 22.7%in the examined temperature range.Due to the structural characteristics of materials,the increasing thermal conductivity of different materials varies depending on the relative humidity.The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%.In addition,the principles of selection of building insulation materials in different humidity regions were given.The research re-sults of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption.展开更多
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)...Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future.展开更多
基金funded by the LatvianCouncil of Science,the project“Investigation of Eco-Friendly Thermal Insulation Materials from Sustainable and Renewable Industrial Crops Residuals,”number lzp-2021/1-0599.
文摘This study examines the development of loose-fill thermal insulation materials derived from annual plant residues,such as wheat straw,water reeds,and corn stalks,processed using the chemimechanical pulping(CMP)technique.The chopped plants were soda-cooked for 30 min,varying NaOH concentration(2%–8%on a dry basis of biomass),and mechanically refined using different disc types.The CMPprocess enhances the homogeneity and stability of defibratedmaterial,yielding improved insulation properties compared to untreated chopped rawmaterials.Chemical analysis revealed that CMP increases cellulose content and reduces lignin levels,enhancing water retention and vapor diffusion properties.Settlement tests confirmed that CMP materials are more resistant to compaction under vibration,maintaining long-term performance.Additionally,the CMP enables the production of lightweight materials that require less resource consumption while achieving comparable thermal insulation performance.The investigated biobased materials offer a sustainable alternative to conventional insulation,with competing thermal conductivity values(0.041-0.046 W/mK)at the settlement-resistant bulk density level of 60 kg/m^(3).The thermal conductivity of CMP materials remains minimally affected.However,the resulting fibers demonstrate significant advantages in stability and material efficiency.This highlights its suitability for loose-fill applications to improve the sustainability of the construction.Using renewable plant residues,CMP-based insulation materials align with circular economy principles and contribute to environmental sustainability.This research underscores the potential of CMP materials to reduce greenhouse gas emissions,optimize resource use,and promote eco-friendly building practices.
文摘This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and enhance the gross national product. The process starts by collecting low-cost sheep fleece from farms and processed via a production line, including scouring, plucking, carding, thermal bonding, and packing. The design process involves determining an optimal location, infrastructure, staffing, machinery, environmental impact, and utilities. A final economic analysis is undertaken to estimate the product’s cost, selling price, and break-even point based on the anticipated capital and operational costs. The plant is intended to process 6778 tons of sheep wool annually. The study suggests that Mafraq Industrial City is a perfect location for the plant, and purchasing land and structures is the optimal option. The projected capital cost is 1,416,679 USD, while the anticipated operational costs amount to 3,206,275 USD. Insulation material production is estimated to be 114,756 m3 annually. The material may be manufactured into 1 m wide, 0.05 m thick sheets for 2.02 USD per square meter. Thus, for a 10-year plant, a 2.47 USD/m2 selling price breaks even in one year.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
基金funded by the National Natural Science Foundation of China (52078068)Postgraduate Research&Practice Innovation Program of Jiangsu Province (SJCX22_1391)+1 种基金the National Science Foundation of Jiangsu Province (BK20220626)Changzhou Leading Innovative Talent Introduction and Cultivation Project (CQ20210085).
文摘As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials.
基金supported by the Natural Science Foundation of Anhui Provincial Education Department(2023AH051130 and KJ2021ZD0040)the University Synergy Innovation Program of Anhui Province(GXXT-2019-015)+2 种基金National Natural Science Foundation of China(51972002)the Student Research Training Program(SRTP)of Anhui University of Technology(S202310360191)National Innovation and Entrepreneurship Training Program for College Students(202210360023).
文摘ZrO_(2)-strengthened porous mullite insulation materials were prepared by foaming technology utilizing ZrSiO_(4) and Al_(2)O_(3) as primary materials and Y_(2)O_(3) as an additive.The effects of Y_(2)O_(3) contents on the phase composition,microstructure,mechanical properties,and heat conductivity of the porous mullite insulation materials were investigated.A suitable Y_(2)O_(3) content could promote phase transition of monoclinic ZrO_(2)(m-ZrO_(2))to tetragonal ZrO_(2)(t-ZrO_(2)),reduce pore size,and improve the strengths of as-prepared specimens.The cold crushing strength and bending strength of as-prepared specimens with a 119µm spherical pore size using 6 wt.%Y_(2)O_(3) were 35.2 and 13.0 MPa,respectively,with a heat conductivity being only 0.248 W/(m K).
基金Funded by the Guizhou Province Technological Breakthroughs Fund(No.20063030)the Guiyang City Technology and Industry Fund(No.200616-9)the Guizhou Science and Technology Founda-tion(No.[2009]2052)
文摘Using carbide slag as the calcareous materials, xonotlite thermal insulation material was successfully prepared via dynamic hydrothermal synthesis. The experimental results show that the xonotlite thermal insulation material is made up of large numbers of "chestnut bur shape" particles. Optimum conditions of calcination temperature of carbide slag, synthesis reaction temperature and time, stirring rate, CaO/SiO2 mol ratio, water/solid weight ratio, amount of fiberglass, molding pressures, dryness temperatures and the presence of dispersant (glycol and polyvinyl alcohol) favor the preparation of xonotlite thermal insulation material. The evaluation of xonotlite thermal insulation material reveals that the product is ultra-light and excellent in physical performances. Such a little amount of impurities in carbide slag has no effect on the phase, morphology, stability at high temperature and physical performances of products.
基金Supported by the National Natural Science Foundation of China(51472086,51002051)CAS Key Laboratory of Carbon Materials(No KLCMKFJJ1703)
文摘A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building.
文摘A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter as nanoparticles with the formation of the SiO Ti bonds.The growth mechanism accounting for the formation of the TiO2 nanolayers was proposed.The morphology,composition,thermal insulation properties,and visible-near infrared(VIS-NIR)refl ectance of the HGMs/TiO2 composite hollow spheres were characterized.The VIS-NIR reflectance of the HGMs/TiO2 composite hollow spheres increased by more than 30%compared to raw HGMs.The thermal conductivity of the particles is 0.058 W/(m K).The result indicates that the VIS-NIR reflectance of the composite hollow spheres is strongly influenced by the coating of TiO2.The composite hollow spheres were used as the main functional filler to prepare the organic-inorganic composite coatings.The glass substrates coated by the organic-inorganic coatings had lower thermal conductivity and higher near infrared reflectivity.Therefore,the HGMs/TiO2 composite hollow spheres can reflect most of the solar energy and effectively keep out the heat as a thermal insulation coating for energy-saving constructions.
文摘This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an excellent resource for buildings insulation material. A linear regression model is used to predict sheep number for the period (2017-2030). Based on the predicted number of Sheep an estimated annual average production of wool is found for the period (2017-2030) to be (3.586 × 10<sup>3</sup> ton). The average cost per kg of fleece produced is calculated to be 0.39 JD, and the estimated price of fleece per head, if market is available for raw fleece, is 1 JD. Average annual financial losses by farmers are calculated to be (3.743 × 10<sup>6</sup> JD) for the period 2002-2016, and they were estimated to be (9.421 × 10<sup>6</sup> JD) for the years 2017-2030. Physical characteristics of sheep-wool are presented and compared to other competitive insulation materials (polystyrene and rockwool). Sustainability of sheep-wool production to be utilized as an insulation material is found to be an excellent solution to the huge waste of wool with respect to farmers and National income and to the problems associated with environmental impact. Results can be generalized to similar cases worldwide.
文摘In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregates(using high purity magnesia powder as starting material and potassium oleate as the foaming agent),middle grade magnesia powder,calcium aluminate cement,and SiO_(2) micropowder as starting materials,introducing walnut shell powder impregnated with silica sol(short for Sws)as a pore-forming agent.The effects of the Sws addition(0,10%,15%,and 20%,by mass)and the sintering temperature(1300,1350,1400,and 1480℃)on the properties of magnesia insulation materials were studied.The results show that(1)for the specimens fired at 1480℃,when the Sws addition is 10%,the cold compressive strength is 22 MPa;when the Sws addition is 20%,the thermal conductivity is 0.368 W·m^(-1)·K^(-1)(350℃);(2)nano-silica in the silica sol reacts with MgO in the matrix to form forsterite,which encapsulates the pores volatilized from the walnut shell powder and forms closed pores.
基金supported by the National Natural Science Foundation of China(No.52076070,No.52008166)the Natural Science Foundation of Hunan Province(No.2021JJ30256,No.2022JJ30139).
文摘In addressing the challenges of solid waste disposal, this study proposed to utilize electrolytic manganese residue to produce building insulation materials. The research focused on the factors such as precursor material ratio, alkali activator ratio, foaming agent and foam stabilizer on the target insulation materials properties. The findings indicated that SiO_(2)/Al_(2)O_(3) molar ratio, SiO_(2)/Na_(2)O molar ratio, and liquid/solid mass ratio impact the mechanical properties of the samples. The best mechanical performance of building structural material samples was characterized by a compressive strength of 11.15 MPa and a density of 1476 kg/m3. The optimal properties for building insulation materials were a thermal conductivity of 0.131–0.104 W/(m·K), compressive strength of 1.49–0.69 MPa, and density of 533–433 kg/m^(3), with a cost of 1722–1294 CNY/m^(3). This research provides a new approach for large-scale electrolytic manganese residue utilization while enhancing insulation performance and reducing energy consumption in buildings, with promising prospects for further engineering development.
基金supported by the National Natural Science Foundation of China(No.52076070,No.52008166)the Natural Science Foundation of Hunan Province(No.2021JJ30256,No.2022JJ30139)the Department of Ecology and Environment of Hunan Province(No.2021003630)。
文摘In response to the challenges posed by the transformation of China's reed industry,leading to difficulties in reed utilization,and the significant increment in raw soil from the expansion of urban infrastructure,the authors proposed a novel method of coupling reed with raw soil to produce an ecological building insulation material.The aim is to enhance the thermal comfort of rural buildings and achieve building energy saving.The research has applied theoretical and experimental methods as the core means of exploration for key factors in the preparation of the novel ecological insulation material.These factors include raw soil content and curing methods.Key performance indicators such as thermal insulation,mechanical properties,fire resistance,water resistance,moisture resistance,and acoustic performance have been utilized for evaluation.The research results indicate that the proposed process and method for the preparation of the ecological insulation material effectively utilize reed and raw soil,achieving excellent multi-target performance.When the content of raw soil is in the range of 0-40%,the material's thermal conductivity ranges from 0.097 W/(m·K)to 0.104 W/(m·K),compressive strength from0.70 MPa to 0.79 MPa,water absorption rate from 29.42%to 38.95%,moisture absorption rate from 13.33%to31.48%,and the maximum sound absorption coefficient is 0.80,with a maximum sound insulation of 56.66 dB.Additionally,a non-combustible A-grade fire resistance was achieved.To expand the application space and scope of the novel material,the research team further explored on-site construction material preparation processes and conducted experimental research,focusing on the key aspect of the"curing process".The low temperature curing method of industrial heating blanket was proposed.The research results indicated that the method is feasible.At an environmental temperature of 25℃,with different curing times and curing temperatures,the material's thermal conductivity ranges from 0.089 W/(m·K)to 0.109 W/(m·K),and the compressive strength is between 0.14 MPa and 0.70 MPa,meeting the relevant parameter requirements.This research opens up avenues for other types of biomass with high economic added value applications and can be directly applied to improving the thermal environment of residential buildings,contributing to building energy saving,rural revitalization,and the implementation of dual-carbon strategies in China.
基金supported by the National Natural Science Foundation of China(No.52076070,No.52008166)the Natural Science Foundation of Hunan Province(No.2021JJ30256,No.2022JJ30139)。
文摘The seemingly useless reeds are prepared as thermal insulation materials,which not only meet the requirements of environmental sustainability but also enhance the added value of reeds,creating new economic benefits.The hydrophobicity of raw biomass surfaces leads to problems such as weak bonding strength and non-dense structure in the formed materials,as well as issues related to the residual insect infestations on the surface.In this study,reed straw was used as the raw material,and foamed geopolymer was used as the binder to prepare building insulation materials based reed.To improve the interfacial adhesion performance between reed straw and foamed geopolymer,a thermochemical modification method-thermal carbonization,was proposed.In this study,the mechanical properties and hydraulic properties of the studied materials with different degrees of surface thermal modification were tested,especially the fire resistance performance,and weathering resistance performance rarely found in published literature.When the surface thermal modification condition of reed straw was 250℃(30 min),the comprehensive performance of reed-based building insulation materials was the best,when the studied material density was 321.3 kg/m^(3);the compressive strength was 0.59 MPa;the thermal conductivity was 0.101 W/(m·K);the pH was 11.27;the moisture absorption rate was 25.1%,and the compressive strength loss rate in wet-dry cycles was 18.5%.In addition,it had excellent fire resistance performance and weathering resistance performance.This new material can be widely used to improve the thermal insulation of traditional buildings and as sandwich filler in prefabricated buildings,such as preparing insulating walls.
基金supported by the National Natural Science Foundation of China(Nos.51472220 and 51872265)Collaborative Innovation Major Special Project of Zhengzhou(No.20XTZX12025)+1 种基金Program for Leading Talents of Science and Technology in the Central Plain of China 2022(No.234200510002)Key Scientific Research Projects of Henan Higher Education Institutions(No.25A150016).
文摘Due to the global energy shortage,it has become essential to reduce energy consumption in the steelmaking process in order to promote the sustainable development of the metallurgical industry.The limitations of traditional ladle insulation materials were addressed by using kaolin as the main raw material in combination with foam-gelcasting technique for in-situ synthesis of porous anorthite thermal insulation materials.Concurrently,the effects of sintering temperature and time on the composition of the physical phases,microstructure and physical properties were elucidated.The results showed that anorthite was the main phase obtained in sintering temperature range of 1200-1450℃,and edges of anorthite grains were well defined and well developed,presenting a plate-like morphology,which significantly improved mechanical strength of sample.The best overall performance was achieved at a firing temperature of 1400℃ and a holding time of 3 h.Compared to conventional ladle thermal insulation materials,samples developed herein showed excellent performance with a porosity of 63.3%,a compressive strength of 14.51 MPa,and an ultra-low thermal conductivity of only 0.29 W/(m K).
基金supported by the National Natural Science Foundation of China(No.51921005).
文摘Polypropylene(PP)-based recyclable materials have attracted tremendous interest for HVDC cable insulation applications due to their superior electrical properties,e.g.,high thermal stability and superior recyclability.Compared with crosslinked polyethylene(XLPE),PP-based materials exhibit the advantages of not only higher working temperatures but also facile and efficient cable manufacturing with reduced costs,which are highly desirable in HVDC cable manufacturing.Considering their promising advantages,PP-based materials have received significant attention from both academia and industry in the field of HVDC cable insulation.In order to adopt PP as a cable insulation material,the mechanical flexibility of PP should be improved.However,regulations of the mechanical properties inevitably influences the electrical properties of PP.So extensive research has been conducted on the regulation of the mechanical and electrical properties of PP.This review summarizes the research progress on recyclable PP-based materials for HVDC cable insulation applications.Particular attention is placed on the electrical property regulations and material structure-property relationships.The challenges that remain to be addressed and the opportunities for future studies on PP-based recyclable HVDC cable insulation materials are also presented.
基金funded by the Science and Technology Bureau of Changsha,China(No.kh1902239)National Natural Science Foundations of China(No.52076070No.52008166)。
文摘A composite biomass insulation material,which uses geopolymers as adhesives and forestry waste as fillers,was proposed and experimentally tested.The orthogonal experimental method was adopted to analyze the optimum theoretical oxide molar ratios and the mass ratio of mixing water to binder(m_(w2)/m__(B))for preparing geopolymers.The influences of curing regimes(including one-stage and two-stage curing methods)and m_(w2)/m_(B) ratios of the insulation materials on mechanical,thermal,and hydraulic performances were also studied by experiment.The results indicated that the optimum combination scheme of preparing geopolymers was molar ratio x_(SiO_(2))/x_(Na_(2)O)=3.3,x_(SiO_(2))/x_(Al_(2)O_(3))=3.2 and m_(w2)/m_(B)=0.5 with the highest mechanical strength of 34.21 MPa.Besides,the best curing conditions of the composite material were the curing temperatures of 85°C and 70°C under the two-stage curing regime,which could achieve the low heat conductivity of 0.123 and 0.125 W/(m·K),and the high mechanical strength of 1.70 MPa and 1.71 MPa,respectively.The optimum m_(w2)/m_(B)ratios of the biomass material were 0.5 to 0.55 with heat conductivity of 0.114 to 0.125 W/(m·K).This novel composite insulation material has satisfying physical performances,which is helpful for achieving building energy conservation.
基金This work was supported by the Natural Science Foundation of Tianjin, China (Grant No. 17JCZDJC31400) and the Scientific Special Commissioner of Tianjin, China (16JCTPJC52800).
文摘In this paper, the influence of different external wall insulation materials on the energy consumption of a newly built apartment in Germany is investigated. Three types of insulation materials commonly used in Germany including mineral fiber, polyurethane, and vacuum insula- tion panel are chosen for the case studies. An energy analysis model is established to clarify the primary energy use for production of the insulation materials and for building space heating. The calculation results show that the energy consumption for insulation material production increases with the insulation thickness, whereas the energy use for space heating decreases with the insulation thickness. Thus, there exists an optimum thickness to get the lowest total energy consumption for each kind of insulation material. The ascending order of the total energy consumption of the three materials is mineral fiber, polyurethane, and vacuum insulation panel. However, the optimum insulation thicknesses for the three insulation materials show a verse order at a certain heat transfer coefficient of the base envelope. The energy payback time (EPT) is proposed to calculate the payback time of the primary energy use for insulation material production. Mineral fiber has the shortest time, followed by poly- urethane and vacuum insulation panel. The EPTS is 10, 19 and 21 years, respectively when the heat transfer coefficient of the base envelope is 0.2 W/(m2.K). In addition, the simulated results show that the theoretical value and the simulated value are basically identical.
基金This work was supported by the National Natural Science Foundation of China(No.51878534,No.51878532 and U20A20311)State Key Laboratory of Green Building in Western China.
文摘At present,thermal conductivity is usually taken as a constant value in the calculation of building energy con-sumption and load.However,in the actual use of building materials,they are exposed to the environment with continuously changing temperature and relative humidity.The thermal conductivity of materials will inevitably change with temperature and humidity,leading to deviations in the estimation of energy consumption in the building.Therefore,in this study,variations in the thermal conductivity of eight common building insulation materials(glass wool,rock wool,silica aerogel blanket,expanded polystyrene,extruded polystyrene,phenolic foam,foam ceramic and foam glass)with temperature(in the range of 20-60°C)and relative humidity(in the range of 0-100%)were studied by experimental methods.The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maxi-mum growth rates from 3.9 to 22.7%in the examined temperature range.Due to the structural characteristics of materials,the increasing thermal conductivity of different materials varies depending on the relative humidity.The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%.In addition,the principles of selection of building insulation materials in different humidity regions were given.The research re-sults of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption.
基金the National Key R&D Program of China(No.2021YFB3701404)the National Natural Science Fund for Distinguished Young Scholars(No.52025041)+1 种基金the National Natural Science Foundation of China(Nos.52250091,51904021,and 52174294)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-02C2 and FRF-BD-22-05).
文摘Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future.