Elinvar alloys exhibit temperature-independent elastic modulus within a specific temperature range,known as the Elinvar effect,which was first observed in Fe-Ni alloys[1].The unique temperature-independent elastic mod...Elinvar alloys exhibit temperature-independent elastic modulus within a specific temperature range,known as the Elinvar effect,which was first observed in Fe-Ni alloys[1].The unique temperature-independent elastic modulus makes Elinvar alloys highly desirable in precision-control applications,including aerospace,electronics,and optical instruments.Currently,most of the used and studied Elinvar alloys are ferromagnetic alloys(FeNi and Fe-Pt)and antiferromagnetic alloys(Fe-Mn and γ-MnCu)[2–4].The Elinvar effect in these alloys typically originates from magnetostriction or magnetoelastic effects,which are magnetic fieldor magnetic transition-dependent[5].Consequently,these Elinvar alloys cannot function properly in the presence of a magnetic field owing to their Elinvar effect being closely tied to magnetic phase transition.Therefore,developing non-magneticdependent Elinvar alloys is highly essential to widen their practical applications.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52401161)the Natural Science Foundation of Sichuan Province for Young Scholars(No.24NSFSC6582)+3 种基金the Postdoctoral Fellowship Program of CPSF(No.GZC20231761)the National Natural Science Foundation of China(No.52271249)the Key Research and Development Program of Shaanxi(No.2023-YBGY-488)the Xi'an Talent Plan(No.XAYC240016).
文摘Elinvar alloys exhibit temperature-independent elastic modulus within a specific temperature range,known as the Elinvar effect,which was first observed in Fe-Ni alloys[1].The unique temperature-independent elastic modulus makes Elinvar alloys highly desirable in precision-control applications,including aerospace,electronics,and optical instruments.Currently,most of the used and studied Elinvar alloys are ferromagnetic alloys(FeNi and Fe-Pt)and antiferromagnetic alloys(Fe-Mn and γ-MnCu)[2–4].The Elinvar effect in these alloys typically originates from magnetostriction or magnetoelastic effects,which are magnetic fieldor magnetic transition-dependent[5].Consequently,these Elinvar alloys cannot function properly in the presence of a magnetic field owing to their Elinvar effect being closely tied to magnetic phase transition.Therefore,developing non-magneticdependent Elinvar alloys is highly essential to widen their practical applications.