Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of ...Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit.展开更多
The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo-...The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.展开更多
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
In multi-agent systems, joint-action must be employed to achieve cooperation because the evaluation of the behavior of an agent often depends on the other agents’ behaviors. However, joint-action reinforcement learni...In multi-agent systems, joint-action must be employed to achieve cooperation because the evaluation of the behavior of an agent often depends on the other agents’ behaviors. However, joint-action reinforcement learning algorithms suffer the slow convergence rate because of the enormous learning space produced by joint-action. In this article, a prediction-based reinforcement learning algorithm is presented for multi-agent cooperation tasks, which demands all agents to learn predicting the probabilities of actions that other agents may execute. A multi-robot cooperation experiment is run to test the efficacy of the new algorithm, and the experiment results show that the new algorithm can achieve the cooperation policy much faster than the primitive reinforcement learning algorithm.展开更多
During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decisi...During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.展开更多
Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key...Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key to speed up the ray casting algorithm. An algorithm is introduced to reduce matrix computation by matrix transformation characteristics of re-sampling points in a two coordinate system. The projection of 3-D datasets on image plane is adopted to reduce the number of rays. Utilizing boundary box technique avoids the sampling in empty voxel. By extending the Bresenham algorithm to three dimensions, each re-sampling point is calculated. Experimental results show that a two to three-fold improvement in rendering speed using the optimized algorithm, and the similar image quality to traditional algorithm can be achieved. The optimized algorithm can produce the required quality images, thus reducing the total operations and speeding up the volume rendering.展开更多
Harmonic drives have various distinctive advantages and are widely used in space drive mechanisms. Accelerated life test (ALT) is commonly conducted to shorten test time and reduce associated costs. An appropriate A...Harmonic drives have various distinctive advantages and are widely used in space drive mechanisms. Accelerated life test (ALT) is commonly conducted to shorten test time and reduce associated costs. An appropriate ALT modet is needed to predict the lifetime of harmonic drives with ALT data. However, harmonic drives which are used in space usually work under a segmental stress history, and traditional ALT models can hardly be used in this situation. This paper proposes a dedicated ALT model for harmonic drives applied in space systems. A comprehensive ALT model is established and genetic algorithm (GA) is adopted to obtain optimal parameters in the model using the Manson fatigue damage rule to describe the fatigue failure process and a cumulative dam- age method to calculate and accumulate the damage caused by each segment in the stress history. An ALT of harmonic drives was carried out and experimental results show that this model is acceptable and effective.展开更多
This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to ...This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to improve the convergence. And its convergence is proved un- der some suitable conditions. Numerical results illustrate that the bi-extrapolated subgradient projection algorithm converges more quickly than the existing algorithms.展开更多
In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially acc...In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially accelerated life tests with Lomax distribution based on interval censored samples. The EM algorithm is used to obtain the maximum likelihood estimations(MLEs) and interval estimations for the shape parameter and acceleration factor.The average relative errors(AREs), mean square errors(MSEs), the confidence intervals for the parameters, and the influence of the sample size are discussed. The results show that the AREs and MSEs of the MLEs decrease with the increase of sample size. Finally, a simulation sample is used to estimate the reliability under different stress levels.展开更多
High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play...High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.展开更多
With the rapid development and popularization of artificial intelligence technology,convolutional neural network(CNN)is applied in many fields,and begins to replace most traditional algorithms and gradually deploys to...With the rapid development and popularization of artificial intelligence technology,convolutional neural network(CNN)is applied in many fields,and begins to replace most traditional algorithms and gradually deploys to terminal devices.However,the huge data movement and computational complexity of CNN bring huge power consumption and performance challenges to the hardware,which hinders the application of CNN in embedded devices such as smartphones and smart cars.This paper implements a convolutional neural network accelerator based on Winograd convolution algorithm on field-programmable gate array(FPGA).Firstly,a convolution kernel decomposition method for Winograd convolution is proposed.The convolution kernel larger than 3×3 is divided into multiple 3×3 convolution kernels for convolution operation,and the unsynchronized long convolution operation is processed.Then,we design Winograd convolution array and use configurable multiplier to flexibly realize multiplication for data with different accuracy.Experimental results on VGG16 and AlexNet network show that our accelerator has the most energy efficient and 101 times that of the CPU,5.8 times that of the GPU.At the same time,it has higher energy efficiency than other convolutional neural network accelerators.展开更多
This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing ...This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing into the combined power of TVAC(Time-Variant Acceleration Coefficients)and IW(Inertial Weight).Proposed algorithm has been tested against linear,non-linear,traditional,andmultiswarmbased optimization algorithms.An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO.Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIWPSO vs.IW based Particle Swarm Optimization(PSO)algorithms,TVAC based PSO algorithms,traditional PSO,Genetic algorithms(GA),Differential evolution(DE),and,finally,Flower Pollination(FP)algorithms.In phase II,the proposed PLTVACIW-PSO uses the same 12 known Benchmark functions to test its performance against the BAT(BA)and Multi-Swarm BAT algorithms.In phase III,the proposed PLTVACIW-PSO is employed to augment the feature selection problem formedical datasets.This experimental study shows that the planned PLTVACIW-PSO outpaces the performances of other comparable algorithms.Outcomes from the experiments shows that the PLTVACIW-PSO is capable of outlining a feature subset that is capable of enhancing the classification efficiency and gives the minimal subset of the core features.展开更多
An improved genetic algorithm and its application to resolve cutting stock problem arc presented.It is common to apply simple genetic algorithm(SGA)to cutting stock problem,but the huge amount of computing of SGA is a...An improved genetic algorithm and its application to resolve cutting stock problem arc presented.It is common to apply simple genetic algorithm(SGA)to cutting stock problem,but the huge amount of computing of SGA is a serious problem in practical application.Accelerating genetic algorithm(AGA)based on integer coding and AGA's detailed steps are developed to reduce the amount of computation,and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem.SGA is adopted to produce individuals within given evolution process,and the variation interval of these individuals is taken as initial domain of the next optimization process,thus shrinks searching range intensively and accelerates the evaluation process of SGA.To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result,fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process.According to the computational experiment,it is observed that this improved GA converges much sooner than SGA,and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem.展开更多
A compact 15.0-MeV, 1.5-kW electron linear accelerator(LINAC) was successfully constructed to provide an electron beam for the first photoneutron source at the Shanghai Institute of Applied Physics, Shanghai,China. Th...A compact 15.0-MeV, 1.5-kW electron linear accelerator(LINAC) was successfully constructed to provide an electron beam for the first photoneutron source at the Shanghai Institute of Applied Physics, Shanghai,China. This LINAC consists of five main parts: a thermal cathode grid-controlled electron gun, a pre-buncher, a variable-phase-velocity buncher, a light-speed accelerating structure, and a high-power transportation beamline. A digital feedforward radio frequency compensator is adopted to reduce the energy spread caused by the transient beam loading effect. Furthermore, a real-time electron gun emission feedback algorithm is used to keep the beam stable. After months of efforts, all the beam parameters successfully met the requirements of the facility. In this paper, the beam commissioning process and performance of the LINAC are presented.展开更多
In this paper, a new method, so called A-method, is given for the convergence analysis of the MQ-algorithm. And the finer relaxation parameter θA is obtained. The numerical results show that our new method has the ou...In this paper, a new method, so called A-method, is given for the convergence analysis of the MQ-algorithm. And the finer relaxation parameter θA is obtained. The numerical results show that our new method has the outstanding effect of accelerating convergence. Moreover, the relaxation parameter θA is the optimum in a point of view.展开更多
Efficient data visualization techniques are critical for many scientific applications. Centroidal Voronoi tessellation(CVT) based algorithms offer a convenient vehicle for performing image analysis,segmentation and co...Efficient data visualization techniques are critical for many scientific applications. Centroidal Voronoi tessellation(CVT) based algorithms offer a convenient vehicle for performing image analysis,segmentation and compression while allowing to optimize retained image quality with respect to a given metric.In experimental science with data counts following Poisson distributions,several CVT-based data tessellation algorithms have been recently developed.Although they surpass their predecessors in robustness and quality of reconstructed data,time consumption remains to be an issue due to heavy utilization of the slowly converging Lloyd iteration.This paper discusses one possible approach to accelerating data visualization algorithms.It relies on a multidimensional generalization of the optimization based multilevel algorithm for the numerical computation of the CVTs introduced in[1],where a rigorous proof of its uniform convergence has been presented in 1-dimensional setting.The multidimensional implementation employs barycentric coordinate based interpolation and maximal independent set coarsening procedures.It is shown that when coupled with bin accretion algorithm accounting for the discrete nature of the data,the algorithm outperforms Lloyd-based schemes and preserves uniform convergence with respect to the problem size.Although numerical demonstrations provided are limited to spectroscopy data analysis,the method has a context-independent setup and can potentially deliver significant speedup to other scientific and engineering applications.展开更多
The Hankel transform is widely used to solve various engineering and physics problems,such as the representation of electromagnetic field components in the medium,the representation of dynamic stress intensity factors...The Hankel transform is widely used to solve various engineering and physics problems,such as the representation of electromagnetic field components in the medium,the representation of dynamic stress intensity factors,vibration of axisymmetric infinite membrane and displacement intensity factors which all involve this type of integration.However,traditional numerical integration algorithms cannot be used due to the high oscillation characteristics of the Bessel function,so it is particularly important to propose a high precision and efficient numerical algorithm for calculating the integral of high oscillation.In this paper,the improved Gaver-Stehfest(G-S)inverse Laplace transform method for arbitrary real-order Bessel function integration is presented by using the asymptotic characteristics of the Bessel function and the accumulation of integration,and the optimized G-S coefficients are given.The effectiveness of the algorithm is verified by numerical examples.Compared with the linear transformation accelerated convergence algorithm,it shows that the G-S inverse Laplace transform method is suitable for arbitrary real order Hankel transform,and the time consumption is relatively stable and short,which provides a reliable calculation method for the study of electromagnetic mechanics,wave propagation,and fracture dynamics.展开更多
The essence of the linear search is one-dimension nonlinear minimization problem, which is an important part of the multi-nonlinear optimization, it will be spend the most of operation count for solving optimization p...The essence of the linear search is one-dimension nonlinear minimization problem, which is an important part of the multi-nonlinear optimization, it will be spend the most of operation count for solving optimization problem. To improve the efficiency, we set about from quadratic interpolation, combine the advantage of the quadratic convergence rate of Newton's method and adopt the idea of Anderson-Bjorck extrapolation, then we present a rapidly convergence algorithm and give its corresponding convergence conclusions. Finally we did the numerical experiments with the some well-known test functions for optimization and the application test of the ANN learning examples. The experiment results showed the validity of the algorithm.展开更多
基金supported by the Basic Research on Dynamic Real-time Modeling and Onboard Adaptive Modeling of Aero Engine,China(No.QZPY202308)。
文摘Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2003005)~~
文摘The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
文摘In multi-agent systems, joint-action must be employed to achieve cooperation because the evaluation of the behavior of an agent often depends on the other agents’ behaviors. However, joint-action reinforcement learning algorithms suffer the slow convergence rate because of the enormous learning space produced by joint-action. In this article, a prediction-based reinforcement learning algorithm is presented for multi-agent cooperation tasks, which demands all agents to learn predicting the probabilities of actions that other agents may execute. A multi-robot cooperation experiment is run to test the efficacy of the new algorithm, and the experiment results show that the new algorithm can achieve the cooperation policy much faster than the primitive reinforcement learning algorithm.
文摘During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.
文摘Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key to speed up the ray casting algorithm. An algorithm is introduced to reduce matrix computation by matrix transformation characteristics of re-sampling points in a two coordinate system. The projection of 3-D datasets on image plane is adopted to reduce the number of rays. Utilizing boundary box technique avoids the sampling in empty voxel. By extending the Bresenham algorithm to three dimensions, each re-sampling point is calculated. Experimental results show that a two to three-fold improvement in rendering speed using the optimized algorithm, and the similar image quality to traditional algorithm can be achieved. The optimized algorithm can produce the required quality images, thus reducing the total operations and speeding up the volume rendering.
基金co-supported by National Natural Science Foundation of China(Grant No.51505015,51575019)the National Basic Research Program of China(No.2014CB046402)CAST-BISEE Innovation Foundation of China
文摘Harmonic drives have various distinctive advantages and are widely used in space drive mechanisms. Accelerated life test (ALT) is commonly conducted to shorten test time and reduce associated costs. An appropriate ALT modet is needed to predict the lifetime of harmonic drives with ALT data. However, harmonic drives which are used in space usually work under a segmental stress history, and traditional ALT models can hardly be used in this situation. This paper proposes a dedicated ALT model for harmonic drives applied in space systems. A comprehensive ALT model is established and genetic algorithm (GA) is adopted to obtain optimal parameters in the model using the Manson fatigue damage rule to describe the fatigue failure process and a cumulative dam- age method to calculate and accumulate the damage caused by each segment in the stress history. An ALT of harmonic drives was carried out and experimental results show that this model is acceptable and effective.
基金Supported by Natural Science Foundation of Shanghai(14ZR1429200)National Science Foundation of China(11171221)+4 种基金Shanghai Leading Academic Discipline Project(XTKX2012)Innovation Program of Shanghai Municipal Education Commission(14YZ094)Doctoral Program Foundation of Institutions of Higher Educationof China(20123120110004)Doctoral Starting Projection of the University of Shanghai for Science and Technology(ID-10-303-002)Young Teacher Training Projection Program of Shanghai for Science and Technology
文摘This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to improve the convergence. And its convergence is proved un- der some suitable conditions. Numerical results illustrate that the bi-extrapolated subgradient projection algorithm converges more quickly than the existing algorithms.
基金Supported by National Natural Science Foundation of China(11271039)
文摘In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially accelerated life tests with Lomax distribution based on interval censored samples. The EM algorithm is used to obtain the maximum likelihood estimations(MLEs) and interval estimations for the shape parameter and acceleration factor.The average relative errors(AREs), mean square errors(MSEs), the confidence intervals for the parameters, and the influence of the sample size are discussed. The results show that the AREs and MSEs of the MLEs decrease with the increase of sample size. Finally, a simulation sample is used to estimate the reliability under different stress levels.
基金supported by the Science and Technology Major Project of Hubei Province,China (No.2021AFB001).
文摘High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.
基金supported by the Project of the State Grid Corporation of China in 2022(No.5700-201941501A-0-0-00)the National Natural Science Foundation of China(No.U21B2031).
文摘With the rapid development and popularization of artificial intelligence technology,convolutional neural network(CNN)is applied in many fields,and begins to replace most traditional algorithms and gradually deploys to terminal devices.However,the huge data movement and computational complexity of CNN bring huge power consumption and performance challenges to the hardware,which hinders the application of CNN in embedded devices such as smartphones and smart cars.This paper implements a convolutional neural network accelerator based on Winograd convolution algorithm on field-programmable gate array(FPGA).Firstly,a convolution kernel decomposition method for Winograd convolution is proposed.The convolution kernel larger than 3×3 is divided into multiple 3×3 convolution kernels for convolution operation,and the unsynchronized long convolution operation is processed.Then,we design Winograd convolution array and use configurable multiplier to flexibly realize multiplication for data with different accuracy.Experimental results on VGG16 and AlexNet network show that our accelerator has the most energy efficient and 101 times that of the CPU,5.8 times that of the GPU.At the same time,it has higher energy efficiency than other convolutional neural network accelerators.
基金funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing into the combined power of TVAC(Time-Variant Acceleration Coefficients)and IW(Inertial Weight).Proposed algorithm has been tested against linear,non-linear,traditional,andmultiswarmbased optimization algorithms.An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO.Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIWPSO vs.IW based Particle Swarm Optimization(PSO)algorithms,TVAC based PSO algorithms,traditional PSO,Genetic algorithms(GA),Differential evolution(DE),and,finally,Flower Pollination(FP)algorithms.In phase II,the proposed PLTVACIW-PSO uses the same 12 known Benchmark functions to test its performance against the BAT(BA)and Multi-Swarm BAT algorithms.In phase III,the proposed PLTVACIW-PSO is employed to augment the feature selection problem formedical datasets.This experimental study shows that the planned PLTVACIW-PSO outpaces the performances of other comparable algorithms.Outcomes from the experiments shows that the PLTVACIW-PSO is capable of outlining a feature subset that is capable of enhancing the classification efficiency and gives the minimal subset of the core features.
基金supported by National Natural Science Foundation of China(No.50575153)Provincial Key Technology Projects of Sichuan,China(No.03GG010-002)
文摘An improved genetic algorithm and its application to resolve cutting stock problem arc presented.It is common to apply simple genetic algorithm(SGA)to cutting stock problem,but the huge amount of computing of SGA is a serious problem in practical application.Accelerating genetic algorithm(AGA)based on integer coding and AGA's detailed steps are developed to reduce the amount of computation,and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem.SGA is adopted to produce individuals within given evolution process,and the variation interval of these individuals is taken as initial domain of the next optimization process,thus shrinks searching range intensively and accelerates the evaluation process of SGA.To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result,fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process.According to the computational experiment,it is observed that this improved GA converges much sooner than SGA,and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem.
基金supported by the Youth Innovation Promotion Association CAS(No.2018300)
文摘A compact 15.0-MeV, 1.5-kW electron linear accelerator(LINAC) was successfully constructed to provide an electron beam for the first photoneutron source at the Shanghai Institute of Applied Physics, Shanghai,China. This LINAC consists of five main parts: a thermal cathode grid-controlled electron gun, a pre-buncher, a variable-phase-velocity buncher, a light-speed accelerating structure, and a high-power transportation beamline. A digital feedforward radio frequency compensator is adopted to reduce the energy spread caused by the transient beam loading effect. Furthermore, a real-time electron gun emission feedback algorithm is used to keep the beam stable. After months of efforts, all the beam parameters successfully met the requirements of the facility. In this paper, the beam commissioning process and performance of the LINAC are presented.
文摘In this paper, a new method, so called A-method, is given for the convergence analysis of the MQ-algorithm. And the finer relaxation parameter θA is obtained. The numerical results show that our new method has the outstanding effect of accelerating convergence. Moreover, the relaxation parameter θA is the optimum in a point of view.
基金supported by the grants DMS 0405343 and DMR 0520425.
文摘Efficient data visualization techniques are critical for many scientific applications. Centroidal Voronoi tessellation(CVT) based algorithms offer a convenient vehicle for performing image analysis,segmentation and compression while allowing to optimize retained image quality with respect to a given metric.In experimental science with data counts following Poisson distributions,several CVT-based data tessellation algorithms have been recently developed.Although they surpass their predecessors in robustness and quality of reconstructed data,time consumption remains to be an issue due to heavy utilization of the slowly converging Lloyd iteration.This paper discusses one possible approach to accelerating data visualization algorithms.It relies on a multidimensional generalization of the optimization based multilevel algorithm for the numerical computation of the CVTs introduced in[1],where a rigorous proof of its uniform convergence has been presented in 1-dimensional setting.The multidimensional implementation employs barycentric coordinate based interpolation and maximal independent set coarsening procedures.It is shown that when coupled with bin accretion algorithm accounting for the discrete nature of the data,the algorithm outperforms Lloyd-based schemes and preserves uniform convergence with respect to the problem size.Although numerical demonstrations provided are limited to spectroscopy data analysis,the method has a context-independent setup and can potentially deliver significant speedup to other scientific and engineering applications.
基金Supported by the National Natural Science Foundation of China(42064004,12062022,11762017,11762016)
文摘The Hankel transform is widely used to solve various engineering and physics problems,such as the representation of electromagnetic field components in the medium,the representation of dynamic stress intensity factors,vibration of axisymmetric infinite membrane and displacement intensity factors which all involve this type of integration.However,traditional numerical integration algorithms cannot be used due to the high oscillation characteristics of the Bessel function,so it is particularly important to propose a high precision and efficient numerical algorithm for calculating the integral of high oscillation.In this paper,the improved Gaver-Stehfest(G-S)inverse Laplace transform method for arbitrary real-order Bessel function integration is presented by using the asymptotic characteristics of the Bessel function and the accumulation of integration,and the optimized G-S coefficients are given.The effectiveness of the algorithm is verified by numerical examples.Compared with the linear transformation accelerated convergence algorithm,it shows that the G-S inverse Laplace transform method is suitable for arbitrary real order Hankel transform,and the time consumption is relatively stable and short,which provides a reliable calculation method for the study of electromagnetic mechanics,wave propagation,and fracture dynamics.
文摘The essence of the linear search is one-dimension nonlinear minimization problem, which is an important part of the multi-nonlinear optimization, it will be spend the most of operation count for solving optimization problem. To improve the efficiency, we set about from quadratic interpolation, combine the advantage of the quadratic convergence rate of Newton's method and adopt the idea of Anderson-Bjorck extrapolation, then we present a rapidly convergence algorithm and give its corresponding convergence conclusions. Finally we did the numerical experiments with the some well-known test functions for optimization and the application test of the ANN learning examples. The experiment results showed the validity of the algorithm.