We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)pho...We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2).展开更多
基金supported by the Fund of the National Key Laboratory of Plasma Physics(Grant No.6142A04230204)the National Natural Science Foundation of China(Project No.12075046).
文摘We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2).