期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical Modelling for Dynamic Instability Process of Submarine Soft Clay Slopes Under Seismic Loading 被引量:1
1
作者 MI Yang WANG Jianhua +1 位作者 CHENG Xinglei YAN Xiaowei 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第5期1109-1120,共12页
Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea,especially submarine landslides,which caused serious damage to marine facilities.The cyclic elastoplastic mo... Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea,especially submarine landslides,which caused serious damage to marine facilities.The cyclic elastoplastic model that can describe the cyclic stress-strain response characteristic for soft clay,is embedded into the coupled Eulerian-Lagrangian(CEL)algorithm of ABAQUS by means of subroutine interface technology.On the basis of CEL technique and undrained cyclic elastoplastic model,a method for analyzing the dynamic instability process of marine slopes under the action of earthquake load is developed.The rationality for cyclic elastoplastic constitutive model is validated by comparing its calculated results with those of von Mises model built in Abaqus.The dynamic instability process of slopes under different conditions are analyzed.The results indicate that the deformation accumulation of soft clay have a significant effect on the dynamic instability process of submarine slopes under earthquake loading.The cumulative deformation is taken into our model and this makes the calculated final deformation of the slope under earthquake load larger than the results of conventional numerical method.When different contact conditions are used for analysis,the smaller the friction coefficient is,the larger the deformation of slopes will be.A numerical analysis method that can both reflect the dynamic properties of soft clay and display the dynamic instability process of submarine landslide is proposed,which could visually predict the topographies of the previous and post failure for submarine slope. 展开更多
关键词 submarine slope saturated soft clay coupled Eulerian-Lagrangian cyclic elastoplastic model dynamic instability process
在线阅读 下载PDF
Detection of the Kuroshio frontal instable processes (KFIP) in the East China Sea using the MODIS images 被引量:1
2
作者 JIA Yongjun ZHANG Jie 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第6期35-43,共9页
The Kuroshio frontal instable processes (KFIP) in the East China Sea (ECS) not only have a great impact on the hydrologic characteristics,the pollutants drift,the distribution of seafloor sediment and the ships na... The Kuroshio frontal instable processes (KFIP) in the East China Sea (ECS) not only have a great impact on the hydrologic characteristics,the pollutants drift,the distribution of seafloor sediment and the ships navigation of the ECS,but also are closely related to the climate changes of the coastal areas of the ECS.However the frequency and area of occurrence of the KFIP have not been studied fully and detailedly.Because of its high spatial and temporal resolution,MODIS data is a kind of very good data source for surveying and researching the KFIP in the ECS.The aim of this study is to detect the KFIP in the ECS by using MODIS data,and to study the frequency and region of occurrence of the KFIP in the ECS.The selection has coverage of level 2 data of MODIS SST and Kd490 ranging from July 1,2002 to June 30,2009 of the ECS when there was no cloud impact or little.By using of the data,the minimum standard of the Kuroshio temperature fronts and the diffuse attenuation coefficient (Kd490) fronts of the ECS are given.Based on these standards and the curvature distinguish methods,the standard of curvature distinguish for the KFIP in the ECS are put forward.By making use of this standard,we study a total of 2073 satellite-derived images,and discover that as long as there is no cloud impact from January to May and October to December,the KFIP in the ECS are surely found in MODIS satellite images.From June to September,the frequency of occurrence can also reach to 82.9% at least.Moreover,it is obtained that there are three source regions of these instability processes,namely,(26°N,121.5°E) nearby,(27°N,125°E) nearby and (30°N,128°E) nearby.The differences of the characteristics of these instability processes which are generated in different regions are analyzed in the present study. 展开更多
关键词 Kuroshio frontal instable processes frequency and region of occurrence East China Sea MODIS
在线阅读 下载PDF
Multi-source information response characteristics of surrounding rock catastrophic instability in deep roadways with four-dimensional support
3
作者 Pengfei Yan Zhanguo Ma +5 位作者 Hongbo Li Peng Gong Haihui Zhao Chuanchuan Cai Mingshuo Xu Tianqi She 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7183-7207,共25页
As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique ... As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals. 展开更多
关键词 Physical model Deep roadway Four-dimensional(4D)support Multi-source monitoring information Catastrophic instability process
在线阅读 下载PDF
Characterization of deformation stability of in-situ TiB2/6351 composites during hot compression based on Murty criterion 被引量:4
4
作者 郭胜利 李德富 +1 位作者 陈东 王浩伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期267-275,共9页
In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And t... In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And the associated microstructural transformations and instability phenomena were studied by observations of the optical and transmission electron microscope.The power dissipation efficiency and instability parameter were calculated following the dynamic material model and plotted with the temperature and logarithm of strain rate to obtain processing maps for strains of 0.2,0.4,and 0.6.The processing maps present the instability zones at higher strain rates.The result shows that with increasing strain,the instability zones enlarge.The microstructural examination shows that the interface separates even the particle cracks or aligns along the shear direction of the adiabatic shear band in the instability zones.Two domains of higher efficiencies correspond to dynamic recovery and dynamic recrystallization during the hot deformation.Using the processing maps,the optimum processing parameters of stain rates and temperatures can be chosen for effective hot deformation of TiB2/6351 composites. 展开更多
关键词 TiB2/6351 composites processing maps dynamic recrystallization flow instability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部