Composite-metal joints with a metal insert are one kind of connecting structure.In this paper,tensile experimental tests were carried out to investigate tensile properties of a compositemetal joint with a novel metal ...Composite-metal joints with a metal insert are one kind of connecting structure.In this paper,tensile experimental tests were carried out to investigate tensile properties of a compositemetal joint with a novel metal insert design.Finite element models of the joint were established,and strain distribution and tensile strength were analyzed.The numerical results are in good agreement with the experimental results.Results show that the joint failure is dominated by shear properties of the resin layer.Increasing the resin layer thickness in a certain range will improve the tensile strength of the joint,while increasing the radius of the fillet on the ending side of the metal insert will decrease the joint strength.Increasing the resin layer plasticity will improve the joint strength.The effect of the embedded depth of the metal insert can be ignored.展开更多
Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temper...Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment.展开更多
基金the National Natural Science Foundation of China(No.11472024)for financial support
文摘Composite-metal joints with a metal insert are one kind of connecting structure.In this paper,tensile experimental tests were carried out to investigate tensile properties of a compositemetal joint with a novel metal insert design.Finite element models of the joint were established,and strain distribution and tensile strength were analyzed.The numerical results are in good agreement with the experimental results.Results show that the joint failure is dominated by shear properties of the resin layer.Increasing the resin layer thickness in a certain range will improve the tensile strength of the joint,while increasing the radius of the fillet on the ending side of the metal insert will decrease the joint strength.Increasing the resin layer plasticity will improve the joint strength.The effect of the embedded depth of the metal insert can be ignored.
基金financially supported by the National Natural Science Foundation of China (Nos.51671017 and 51471024)Fundamental Research Funds for the Central Universities (No.FRFBR-15-078A)
文摘Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment.