期刊文献+
共找到907,607篇文章
< 1 2 250 >
每页显示 20 50 100
An input-output model for energy accounting and analysis of industrial production processes: a case study of an integrated steel plant 被引量:1
1
作者 Xiao-jun Liu Sheng-ming Liao +1 位作者 Zheng-hua Rao Gang Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第5期524-538,共15页
To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input-output (IO) model was developed ... To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input-output (IO) model was developed to provide an integrated energy (material) accounting and analysis approach for industrial production processes. By extending the existing processlevel IO models, the production, usage, export and loss of by-products were explicitly considered in the proposed IO model. Moreover, the by-products allocation procedures were incorporated into the proposed IO model to reflect individual contributions of products to energy consumption. Finally, the proposed model enabled calculating embodied energy of main products and total energy consumption under hierarchical accounting scope. Plant managers, energy management consultants, governmental officials and academic researchers could use this input-output model to account material and energy flows, thus calculating energy consumption indicators of a production process with their specific system boundary requirements. The accounting results could be further used for energy labeling, identifying bottlenecks of production activities, evaluating industrial symbiosis effects, improving materials and energy utilization efficiency, etc. The model could also be used as a planning tool to determine the effect that a particular change of technology and supply chains may have on the industrial production processes. The proposed model was tested and applied in a real integrated steel mill, which also provided the reference results for related researches. At last, some concepts, computational issues and limi- tations of the proposed model were discussed. 展开更多
关键词 input-output model · Energy consumption · Energy accounting · Embodied energy · Industrial production process · Integrated steelmaking process
原文传递
INPUT-OUTPUT MODELS OF SCIENCE AND TECHNOLOGY AND ITS APPLICATION IN EVALUATING PROGRESS OF ENTERPRISE SCIENCE AND TECHNOLOGY
2
作者 Hu Zhenhua Luo Fayou He Xiaojie 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1996年第1期153-158,共6页
The method of compiling input-output models of science and technology was studied,and the application of input-output techniques in evaluating the progress of enterprise science and technology was discussed.And the mo... The method of compiling input-output models of science and technology was studied,and the application of input-output techniques in evaluating the progress of enterprise science and technology was discussed.And the models for determining direct,indirect and full contributions of the progress of enterprise science and technology have been set up which can be used to analyse and evaluate the direct,indirect and full benefits of the progress of enterprise science and technology. 展开更多
关键词 input-output techniques input-output models progress of science and technology full economic benefits
在线阅读 下载PDF
Regional Agricultural Input-Output Model and Countermeasure for Production and Income Increase of Farmers in Southern Xinjiang,China
3
作者 Jiang Qing-song Zhang Xing-ji 《Asian Agricultural Research》 2010年第6期29-33,共5页
Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage ... Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage of water resources,tremendous pressure on ecological balance,insignificant economic and social benefits of agricultural production in southern Xinjiang,agriculture remaining a weak industry,agricultural economy as the economic subject of southern Xinjiang,and backward economic development of southern Xinjiang.Taking the Aksu area as an example,according to the input and output data in the years 2002-2007,input-output model about regional agriculture of the southern Xinjiang is established by principal component analysis.DPS software is used in the process of solving the model.Then,Eviews software is adopted to revise and test the model in order to analyze and evaluate the economic significance of the results obtained,and to make additional explanations of the relevant model.Since the agricultural economic output is seriously restricted in southern Xinjiang at present,the following countermeasures are put forward,such as adjusting the structure of agricultural land,improving the utilization ratio of land,increasing agricultural input,realizing agricultural modernization,rationally utilizing water resources,maintaining eco-environmental balance,enhancing the awareness of agricultural insurance,minimizing the risk and loss,taking the road of industrialization of characteristic agricultural products,and realizing the transfer of surplus labor force. 展开更多
关键词 Regional agriculture input-output model Production and income increase Principal component analysis Econometric model China
在线阅读 下载PDF
Construction of Two-Region Input-output Model——A Case Study of Henan Province 被引量:1
4
作者 SHANG Yong Department of Statistics, Henan University of Economics and Law, Zhengzhou 450002, China 《Asian Agricultural Research》 2012年第1期9-12,共4页
On the basis of input-output table of Henan Province and China in 2007, this paper advances a simple method of constructing two-region input-output model using MRIO model, to research the economic link between the ind... On the basis of input-output table of Henan Province and China in 2007, this paper advances a simple method of constructing two-region input-output model using MRIO model, to research the economic link between the industries of Henan Province and the industries of other regions. I summarize the characteristics of this method based on this as follows: when researching inter-regional economic link, the multi-region or two-region input-output model has prominent superiority, and we can conduct preliminary estimation on the multi-region input-output model using location quotient approach. 展开更多
关键词 input-output model LOCATION QUOTIENT MRIO model In
在线阅读 下载PDF
Environmental input-output model and its analysis with a focus on the solid waste management sectors
5
作者 Zeng, Guang-Ming Yuan, Xing-Zhong +3 位作者 Zhang, Pan-Yue Guo, Huai-Cheng Huang, Gordon Guo-He Hemelaar, L. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第2期53-58,共6页
An environmental input output model (EIOM) was introduced to the regional solid waste management sectors, which can reflect the direct and indirect relations between the environment and the regional economy developme... An environmental input output model (EIOM) was introduced to the regional solid waste management sectors, which can reflect the direct and indirect relations between the environment and the regional economy development. Some details about how to use the EIOM was discussed. The EIOM was applied to the Changsha City in China. The example results indicate that much useful information related to the environment and the regional economy development can be gained from the solution of the EIOM. Thus, the EIOM can be used as a useful tool for the sustainable development planning including the solid waste management sectors. 展开更多
关键词 environmental input\|output model analysis of economy and environment solid waste management
在线阅读 下载PDF
Carbon price impacts on sector cost:based on an input-output model of Beijing
6
作者 Yijing Zhang Alun Gu Xiusheng Zhao 《Chinese Journal of Population,Resources and Environment》 2014年第3期239-246,共8页
Under the pressure of sustained growth in energy consumption in China,the implementation of a carbon pricing mechanism is an effective economic policy measure for promoting emission reduction,as well as a hotspot of r... Under the pressure of sustained growth in energy consumption in China,the implementation of a carbon pricing mechanism is an effective economic policy measure for promoting emission reduction,as well as a hotspot of research among scholars and policy makers.In this paper,the effects of carbon prices on Beijing's economy are analyzed using input-output tables.The carbon price costs are levied in accordance with the products'embodied carbon emission.By calculation,given the carbon price rate of 10 RMB/t-CO_2,the total carbon costs of Beijing account for approximately 0.22-0.40%of its gross revenue the same year.Among all industries,construction bears the largest carbon cost Among export sectors,the coal mining and washing industry has much higher export carbon price intensity than other industries.Apart from traditional energy-intensive industries,tertiary industry,which accounts for more than 70%of Beijing's economy,also bears a major carbon cost because of its large economic size.However,from 2007 to 2010,adjustment of the investment structure has reduced the emission intensity in investment sectors,contributing to the reduction of overall emissions and carbon price intensity. 展开更多
关键词 carbon PRICING input-output method BEIJING EMBODIED emissions
在线阅读 下载PDF
Research on carbon emissions in China's export trade based on input-output model
7
作者 Zongxian Feng Jinjun Xue Yu'e Song 《Chinese Journal of Population,Resources and Environment》 2013年第1期1-9,共9页
Becoming the world's largest emitter of carbon makes China the object of criticism;however,people may ignore the fact that when China exports low-carbon products,the carbon emissions have been left in the meanwhil... Becoming the world's largest emitter of carbon makes China the object of criticism;however,people may ignore the fact that when China exports low-carbon products,the carbon emissions have been left in the meanwhile,forming the so-called"embodied carbon".Using the input-output model,this paper analyzes the carbon emission intensity and amount of embodied carbon of various sectors in China's export trade in 2002 and 2007,and filters out high carbon emission sectors.In addition,this paper also points out the problem of carbon emissions'international transfer from developed countries to China through the analysis of national and regional flow of export carbon emissions and changing of the proportion of emissions for exports relative to total emissions,and explains the reason that caused carbon transfer to China by using the treadmill of production theory.Based on that,this paper proposes some measures for carbon reduction in China from the foreign trade perspective. 展开更多
关键词 EXPORT trade EMBODIED CARBON input-output high CARBON transfer TREADMILL of production theory
在线阅读 下载PDF
Green Input-Output Model for Power Company─Theoretical & Application Analysis
8
作者 Lei Ming Guanghua School of Management, Peking University, 100871, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第1期1-12,共12页
Based on the theory of marginal opportunity cost, one kind of green input-output table and models of power company are put forward in this paper. For an appliable purpose, analysis of integrated planning, cost analysi... Based on the theory of marginal opportunity cost, one kind of green input-output table and models of power company are put forward in this paper. For an appliable purpose, analysis of integrated planning, cost analysis, pricing of the power company are also given. 展开更多
关键词 POWER Environmental engineering Energy management system System design modeling.
在线阅读 下载PDF
Modification of the Leontief-Ford Input-Output Model for the Green Economy Goals and Environment Protection
9
作者 Ivan Potravny Andrey Gusev +1 位作者 Vasily Stoykov Violetta Gassiy 《Journal of Geoscience and Environment Protection》 2017年第11期15-23,共9页
The economics’ ecological modernization approach based on the input-output balance model is considered in the paper. The government measures on Russian Federation’s transition to green economy on reducing of greenho... The economics’ ecological modernization approach based on the input-output balance model is considered in the paper. The government measures on Russian Federation’s transition to green economy on reducing of greenhouse gas emissions are analyzed. In an article for green economy evaluation, including greenhouse gas emissions per capita and per unit of GDP, the indicator of the production environmental costs is proposed to include. The authors suppose adding and to modernize the Leontief-Ford model of input-output balance by economic evaluation of the environment pollution effects. This model is proposed to consider macro-economic assessment of environmental damage, health deterioration due to environmental pollution, as well as the use costs of the environmentally friendly technologies, the environmental and energy innovations’ implementation, climate change. The proposed modified model of environmentally oriented input-output balance can be used in the economic compensation system implementation on natural capital use and ecosystem services’ consuming in countries and their regions. The modified Leontief-Ford model proposed in the paper can be used for green economy development calculating, for example in Russia during the development of measures for the environment and economic development. Also this paper opens discussions for opportunities of the further possible integration of the theoretical models for environment protection decision-making. 展开更多
关键词 ECOLOGICAL MODERNIZATION of ECONOMY ECONOMIC Loss Environmental POLLUTION Green ECONOMY Leontief-Ford model
暂未订购
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
10
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
基于24Model的动火作业事故致因文本挖掘 被引量:1
11
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
12
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
13
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
14
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:2
15
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
16
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
17
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
18
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部