A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified ...A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.展开更多
Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower tri...Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.展开更多
Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces w...Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.展开更多
This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good...This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.展开更多
A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a su...A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.展开更多
The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced pr...The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.展开更多
Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted pow...Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted power supply. The proposed converter uses four winding transformer with two primary windings and two secondary windings. The grid supply is connected to the first winding of transformer through rectifier-inverter for controlled power transfer. The solar energy is inverted and applied to the second winding of primary. Two output ports are considered. The circuit is designed to get zero current switching during turn-off and zero voltage switching during turn-on to alleviate the switching losses. The simulation results for the proposed configuration are presented in this paper.展开更多
In general, the seismic response analysis in earthquake engineering assumes that the vibration parameters of the target and the contact surface of the external media are identical,i. e., single point input. However, e...In general, the seismic response analysis in earthquake engineering assumes that the vibration parameters of the target and the contact surface of the external media are identical,i. e., single point input. However, earthquake energy has an attenuation phenomenon in wave propagation,so a wide range of soil slopes and the external medium contact surface of different input points on motion are not identical. If we consider single point input only, it may not correspond with reality, so it is necessary to carry out research on multi-point input methods. Based on the 2-D slope model,single-point input and multi-point input are performed respectively to analyze and compare their similarities and differences in the perspectives of the characteristics of seismic response of soil layer and plastic zone distribution to provide a reference for the seismic design of slopes. The results show that in the perspective of soil seismic response analysis,the peak acceleration output and peak velocity output under multi-point input are greater than the peak values under single point input at the same monitoring point,the peak appearing time is also earlier than that of the single point input; in terms of the plastic zone distribution,the multi-point effect is manifested as the presence of more obvious tensile shear failures; in the perspective of safety coefficient,the safety coefficient under each multi-point input is smaller than that of single point input,a difference of about 7 % or so. In summary,multi-point input is more reasonable and practical than single point input,so multi-point input should be considered in seismic design.展开更多
In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-...In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-triggered strategy is developed to determine the time interval between the adjacent triggers. The triggering condition is designed by using the current sampled consensus error. Furthermore, the consensus control protocol is designed by means of a state feedback approach. It is shown that the considered multi-agent systems can reach consensus with the presented algorithm. Some sufficient conditions are proposed in the form of linear matrix inequalities(LMIs) to show the positively invariant property of the domain of attraction(DOA). Moreover, some sufficient conditions of controller synthesis are provided to enlarge the volume of the DOA and obtain the control gain matrix. A numerical example is simulated to demonstrate the effectiveness of the theoretical analysis results.展开更多
Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotiv...Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.展开更多
In this study, we apply the data envelopment analysis(DEA) model to quantitatively measure the input and output efficiency of 19 urban agglomerations in China from 2011 to 2016. The results show that the input and out...In this study, we apply the data envelopment analysis(DEA) model to quantitatively measure the input and output efficiency of 19 urban agglomerations in China from 2011 to 2016. The results show that the input and output efficiency of urban agglomerations is relatively not high, only a small number of that reach the optimal DEA efficiency. It is clearly revealed that there are the regions from the east that presents the better performance, followed by regions from the central and the west. The peer counts show that Zhusanjiao is taken into account 12 times which shows the importance here of the Zhusanjiao model.Considering the values for radial movements and the slack movements, respective urban agglomeration has their improving orientation towards the capital slack, the labor slack or the land slack. It offers a scientific decision-making of for healthy urbanization and high quality development.展开更多
Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained ...Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.展开更多
In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applicati...In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input multi-output(MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings,interactions in-between the process input-output variables and generally have an complex internal structure. The aim of this paper is to design, simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system techniques. There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO case. The first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped in a local minimum solution. The second is the online real time optimisation(RTO) of the manipulated variable at every sampling time.A novel wavelet neural network(WNN) with high predicting precision and time-frequency localisation characteristic was selected for an MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the WNN is more robust during abnormal operating conditions.展开更多
This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. ...This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.展开更多
Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precodin...Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precoding method is proposed and investigated for multi-cell Multi-Input Multi-Output (MIMO) systems. We propose a relaxed ZF precoding method by relaxing the ZF criterion to some degree so that the inter-cell interference may not be zero. Complexity analysis shows that compared with the conventional ZF method, the additional computation complexity for the proposed method is trivial. Simulation results show that the proposed relaxed ZF method has better performance than the conventional ZF method in terms of the sum-rate, especially at low Signal to Noise Ratio (SNR).展开更多
In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were prop...In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.展开更多
When a feedback system has components described by non-rational transfer functions, a standard practice in designing such a system is to replace the non-rational functions with rational approximants and then carry out...When a feedback system has components described by non-rational transfer functions, a standard practice in designing such a system is to replace the non-rational functions with rational approximants and then carry out the design with the approximants by means of a method that copes with rational systems. In order to ensure that the design carried out with the approximants still provides satisfactory results for the original system, a criterion of approximation should be explicitly taken into account in the design formulation. This paper derives such a criterion for multi-input multi-output(MIMO) feedback systems whose design objective is to ensure that the absolute values of every error and every controller output components always stay within prescribed bounds whenever the inputs satisfy certain bounding conditions. The obtained criterion generalizes a known result which was derived for single-input single-output(SISO) systems; furthermore, for a given rational approximant matrix, it is expressed as a set of inequalities that can be solved in practice. Finally, a controller for a binary distillation column is designed by using the criterion in conjunction with the method of inequalities. The numerical results clearly demonstrate that the usefulness of the criterion in obtaining a design solution for the original system.展开更多
The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-cod...The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.展开更多
In order to improve detection and estimation performance of distributed OrthogonalFrequency-Division Multiplexing(OFDM) Multiple-Input Multiple-Output(MIMO) radar system in multi-target scene, we propose a novel a...In order to improve detection and estimation performance of distributed OrthogonalFrequency-Division Multiplexing(OFDM) Multiple-Input Multiple-Output(MIMO) radar system in multi-target scene, we propose a novel approach of Adaptive Waveform Design(AWD) based on a constrained Multi-Objective Optimization(MOO). The sparse measurement model of this radar system is derived, and the method based on decomposed Dantzig selectors is applied for the sparse recovery according to the block structures of the sparse vector and the system matrix. An AWD approach is proposed, which optimizes two objective functions, namely minimizing the upper bound of the recovery error and maximizing the weakest-target return, by adjusting the complex weights of the emitting waveform amplitudes. Several numerical simulations are provided and their results show that the detection and estimation performance of the radar system is improved significantly when this MOO-based AWD approach is applied to the distributed OFDM MIMO radar system. Especially, we verify the effectiveness of our AWD approach when the available samples are reduced severally and the technique of compressed sensing is introduced.展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0234)
文摘A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.
基金National Natural Science Foundation of China (10972104) The Fundamental Research Funds for NUAA(NS2010007)
文摘Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.
基金supported by the Fundamental Research Funds for the Central Universities (No. NS2015008)the corresponding work was performed in the State Key Laboratory of Mechanics and Control of Mechanical Structures
文摘Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.
文摘This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.
基金supported by National Natural Science Foundation of China (No. 60874116)Natural Science Foundation of Hebei Province (No. F2009000857)
文摘A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.
文摘The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.
文摘Multi input and multi output converters are becoming popular because they are cost effective and compact. This paper proposes a multi input multi output converter for Grid-Solar power integration for uninterrupted power supply. The proposed converter uses four winding transformer with two primary windings and two secondary windings. The grid supply is connected to the first winding of transformer through rectifier-inverter for controlled power transfer. The solar energy is inverted and applied to the second winding of primary. Two output ports are considered. The circuit is designed to get zero current switching during turn-off and zero voltage switching during turn-on to alleviate the switching losses. The simulation results for the proposed configuration are presented in this paper.
基金funded by the Program of China Earthquake Science Data Sharing Platform and the Youth Fund(17404031570521)
文摘In general, the seismic response analysis in earthquake engineering assumes that the vibration parameters of the target and the contact surface of the external media are identical,i. e., single point input. However, earthquake energy has an attenuation phenomenon in wave propagation,so a wide range of soil slopes and the external medium contact surface of different input points on motion are not identical. If we consider single point input only, it may not correspond with reality, so it is necessary to carry out research on multi-point input methods. Based on the 2-D slope model,single-point input and multi-point input are performed respectively to analyze and compare their similarities and differences in the perspectives of the characteristics of seismic response of soil layer and plastic zone distribution to provide a reference for the seismic design of slopes. The results show that in the perspective of soil seismic response analysis,the peak acceleration output and peak velocity output under multi-point input are greater than the peak values under single point input at the same monitoring point,the peak appearing time is also earlier than that of the single point input; in terms of the plastic zone distribution,the multi-point effect is manifested as the presence of more obvious tensile shear failures; in the perspective of safety coefficient,the safety coefficient under each multi-point input is smaller than that of single point input,a difference of about 7 % or so. In summary,multi-point input is more reasonable and practical than single point input,so multi-point input should be considered in seismic design.
基金supported by the National Natural Science Foundation of China(61921004,61520106009,U1713209,61973074)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-triggered strategy is developed to determine the time interval between the adjacent triggers. The triggering condition is designed by using the current sampled consensus error. Furthermore, the consensus control protocol is designed by means of a state feedback approach. It is shown that the considered multi-agent systems can reach consensus with the presented algorithm. Some sufficient conditions are proposed in the form of linear matrix inequalities(LMIs) to show the positively invariant property of the domain of attraction(DOA). Moreover, some sufficient conditions of controller synthesis are provided to enlarge the volume of the DOA and obtain the control gain matrix. A numerical example is simulated to demonstrate the effectiveness of the theoretical analysis results.
基金Project supported by the Centre for Smart Grid and Information Convergence(CeSGIC)at Xi’an Jiaotong-Liverpool University,China
文摘Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.
文摘In this study, we apply the data envelopment analysis(DEA) model to quantitatively measure the input and output efficiency of 19 urban agglomerations in China from 2011 to 2016. The results show that the input and output efficiency of urban agglomerations is relatively not high, only a small number of that reach the optimal DEA efficiency. It is clearly revealed that there are the regions from the east that presents the better performance, followed by regions from the central and the west. The peer counts show that Zhusanjiao is taken into account 12 times which shows the importance here of the Zhusanjiao model.Considering the values for radial movements and the slack movements, respective urban agglomeration has their improving orientation towards the capital slack, the labor slack or the land slack. It offers a scientific decision-making of for healthy urbanization and high quality development.
文摘Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.
基金supported by Petroleum Training Development Fund,Nigeria
文摘In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input multi-output(MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings,interactions in-between the process input-output variables and generally have an complex internal structure. The aim of this paper is to design, simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system techniques. There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO case. The first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped in a local minimum solution. The second is the online real time optimisation(RTO) of the manipulated variable at every sampling time.A novel wavelet neural network(WNN) with high predicting precision and time-frequency localisation characteristic was selected for an MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the WNN is more robust during abnormal operating conditions.
基金supported by the National Natural Science Foundation of China (60972152 61001153)the Aeronautics Science Foundation of China (2009ZC53031)
文摘This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.
基金Supported by Shantou Youth Scientific Research Fund(No.YR11002)Distinguished Youth Fund in Higher Education of Guangdong Province(No.2012LYM_0064)
文摘Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precoding method is proposed and investigated for multi-cell Multi-Input Multi-Output (MIMO) systems. We propose a relaxed ZF precoding method by relaxing the ZF criterion to some degree so that the inter-cell interference may not be zero. Complexity analysis shows that compared with the conventional ZF method, the additional computation complexity for the proposed method is trivial. Simulation results show that the proposed relaxed ZF method has better performance than the conventional ZF method in terms of the sum-rate, especially at low Signal to Noise Ratio (SNR).
文摘In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.
基金financial support from the honour program of the Department of Electrical Engineering,Faculty of Engineering,Chulalongkorn University
文摘When a feedback system has components described by non-rational transfer functions, a standard practice in designing such a system is to replace the non-rational functions with rational approximants and then carry out the design with the approximants by means of a method that copes with rational systems. In order to ensure that the design carried out with the approximants still provides satisfactory results for the original system, a criterion of approximation should be explicitly taken into account in the design formulation. This paper derives such a criterion for multi-input multi-output(MIMO) feedback systems whose design objective is to ensure that the absolute values of every error and every controller output components always stay within prescribed bounds whenever the inputs satisfy certain bounding conditions. The obtained criterion generalizes a known result which was derived for single-input single-output(SISO) systems; furthermore, for a given rational approximant matrix, it is expressed as a set of inequalities that can be solved in practice. Finally, a controller for a binary distillation column is designed by using the criterion in conjunction with the method of inequalities. The numerical results clearly demonstrate that the usefulness of the criterion in obtaining a design solution for the original system.
基金supported by the National Natural Science Foundation of China(61101097)
文摘The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.
基金supported by the National Basic Research Program of China(No.613205212)
文摘In order to improve detection and estimation performance of distributed OrthogonalFrequency-Division Multiplexing(OFDM) Multiple-Input Multiple-Output(MIMO) radar system in multi-target scene, we propose a novel approach of Adaptive Waveform Design(AWD) based on a constrained Multi-Objective Optimization(MOO). The sparse measurement model of this radar system is derived, and the method based on decomposed Dantzig selectors is applied for the sparse recovery according to the block structures of the sparse vector and the system matrix. An AWD approach is proposed, which optimizes two objective functions, namely minimizing the upper bound of the recovery error and maximizing the weakest-target return, by adjusting the complex weights of the emitting waveform amplitudes. Several numerical simulations are provided and their results show that the detection and estimation performance of the radar system is improved significantly when this MOO-based AWD approach is applied to the distributed OFDM MIMO radar system. Especially, we verify the effectiveness of our AWD approach when the available samples are reduced severally and the technique of compressed sensing is introduced.