In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model sw...In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model switching.The μ-modification is introduced in the model reference architecture to construct the adaptive controller.The proof of stability is based on the candidate Lyapunov function,while appropriate switching of multiple models guarantees asymptotic tracking of the system states and the boundedness of all signals.Simulation results illustrate the efficiency of the proposed method.展开更多
A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and c...A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme,various modifications have been employed to achieve the goal. "C omposite model reference adaptive control"of higher performance is seam-lessly combined with "positive μ-mod",which consequently results in a smooth tracking trajectory despite of the input constraints. In addition,bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop systemcan be guaranteed by using Lyapunov theory.The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
针对欠驱动水平TORA(translational oscillators with rotating actuator)系统,提出一种基于生物启发模型的有界输入控制方法,实现系统在执行器存在饱和约束情况下的镇定控制.首先,根据水平TORA系统的动力学模型分析系统的无源特性,进...针对欠驱动水平TORA(translational oscillators with rotating actuator)系统,提出一种基于生物启发模型的有界输入控制方法,实现系统在执行器存在饱和约束情况下的镇定控制.首先,根据水平TORA系统的动力学模型分析系统的无源特性,进而给出系统的控制目标;接着,基于无源特性构造一种新颖的Lyapunov函数,在此基础上设计一种结构简单的非线性状态反馈控制器;然后,考虑执行器的饱和约束条件,引入受生物启发建立的神经动力学模型,利用该模型的有界平滑输出特性,设计一种改进的状态反馈控制器;最后,根据LaSalle不变性原理对系统的稳定性进行严格的数学分析和证明.与其他方法相比,所提方法不仅考虑了执行器的饱和约束问题,而且设计的控制算法简单高效,易于工程实现.仿真与对比结果表明,所提方法具有更好的控制性能.展开更多
基金supported by the Aeronautics Science Foundation of China(No.2007ZC52039)the National Natural Science Foundation of China(No.90816023)
文摘In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model switching.The μ-modification is introduced in the model reference architecture to construct the adaptive controller.The proof of stability is based on the candidate Lyapunov function,while appropriate switching of multiple models guarantees asymptotic tracking of the system states and the boundedness of all signals.Simulation results illustrate the efficiency of the proposed method.
基金Supported by Deep Exploration Technology and Experimentation Project(201311194-04)
文摘A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme,various modifications have been employed to achieve the goal. "C omposite model reference adaptive control"of higher performance is seam-lessly combined with "positive μ-mod",which consequently results in a smooth tracking trajectory despite of the input constraints. In addition,bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop systemcan be guaranteed by using Lyapunov theory.The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
文摘针对欠驱动水平TORA(translational oscillators with rotating actuator)系统,提出一种基于生物启发模型的有界输入控制方法,实现系统在执行器存在饱和约束情况下的镇定控制.首先,根据水平TORA系统的动力学模型分析系统的无源特性,进而给出系统的控制目标;接着,基于无源特性构造一种新颖的Lyapunov函数,在此基础上设计一种结构简单的非线性状态反馈控制器;然后,考虑执行器的饱和约束条件,引入受生物启发建立的神经动力学模型,利用该模型的有界平滑输出特性,设计一种改进的状态反馈控制器;最后,根据LaSalle不变性原理对系统的稳定性进行严格的数学分析和证明.与其他方法相比,所提方法不仅考虑了执行器的饱和约束问题,而且设计的控制算法简单高效,易于工程实现.仿真与对比结果表明,所提方法具有更好的控制性能.