The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry ...The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry air and combustion gas containing water vapour(natural gas burning).The oxidation is influenced by the gas atmosphere type,the iron alloying system,and the inoculating elements depending on the heating temperature.The weight gain increases from 0.001%-0.1%(400°C)to 0.05%-0.70%(600°C)and up to 0.10%-2.15%(800°C).No particular effects of the considered influencing factors are found when heating at 400°C,while at 600°C,mainly the oxidation gas atmosphere type shows a visible influence.At the highest heating temperature of 800°C,a limited increase of the weight gain is found for dry air atmosphere(up to 0.25%),but it drastically increases for combustion atmospheres(0.65%-2.15%).The water vapour presence in the combustion atmosphere is an important oxidising factor at 600-800°C.The alloying system appears to influence the oxidation behavior mainly at a heating temperature of 800°C in the combustion atmosphere,as evidenced by the lower weight gain in 5.25%silicon cast iron.Positive effects of inoculating elements increase with the heating temperature,with Ca and Ba-FeSi inoculation generally showing better performance.Irons inoculated with CaRE-FeSi exhibit a higher degree of oxidation.These results are in good relationship with the previous reported data:Ca-Ba-inoculation system appears to be better than simple Ca for improving the graphite parameters,while RE-bearing inoculant negatively affects the compactness degree of graphite particles in high-Si ductile irons.As the lower compactness degree is typical for graphite nodules in high-Si ductile irons,which negatively affects the oxidation resistance,it is necessary to employ specific metallurgical treatments to improve nodule quality.Inoculation,in particular,is a potential method to achieve this improvement.展开更多
Cultivation of aerobic granules for simultaneous nitrification and denitrification in two sequencing batch airlift bioreactors was studied. Conventional activated floc and anaerobic granules served as main two inocula...Cultivation of aerobic granules for simultaneous nitrification and denitrification in two sequencing batch airlift bioreactors was studied. Conventional activated floc and anaerobic granules served as main two inoculated sludge in the systems. Morphological variations of sludge in the reactors were observed. It was found that the cultivation of aerobic granules was closely associated with the kind of inoculated sludge. Round and regular aerobic granules were prevailed in both reactors, and the physical characteristics of the aerobic granules in terms of settling ability, specific gravity, and ratio of water containing were distinct when the inoculate sludge was different. Aerobic granules formed by seeding activated floc are more excellent in simultaneous nitrification and denitrification than that by aerobic granules formed from anaerobic granules. It was concluded that inoculated sludge plays a crucial role in the cultivation of aerobic granules for simultaneous nitrification and denitrification.展开更多
Immune-deficient nude mice were inoculated with nude mouse derived Mycobacteriurn leprae by multiple routes (intravenously. subcutaneously at the foot pads and ears). The results showed that these inoculated animals w...Immune-deficient nude mice were inoculated with nude mouse derived Mycobacteriurn leprae by multiple routes (intravenously. subcutaneously at the foot pads and ears). The results showed that these inoculated animals were capable of producing a great number of Mycobacterium leprae to a level 10(11-12) per gram of tissue. and were detected histopathologically to have heavy leproniatous lesions. The dissemination of the infection was found particularly in sites with lower body temperature.The organisms have a partiality to striated muscles and peripheral nerves. The authors suggest that experimental leprosy in nude mice is a very useful tool for leprosy resarch. especially in countries without armadillos. Compared with the single-route inoculation reported previously. multiple-route inoculation is more available.展开更多
As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refini...As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refining ratio of the inoculated Mg-Al alloys are systematically investigated.The results show that the minimum grain size of Mg-3Al alloy is achieved by adding 2wt.%MgAl_(2)O_(4)powder and this alloy exhibits higher grain refining ratio than Mg-5Al and Mg-8Al alloys.The crystallographic misfit calculation indicates the wellmatching and possible orientation relationships(ORs)betweenα-Mg and MgAl_(2)O_(4).Among these predicted ORs,[10–10]α−Mg//[110]MgAl2O4 in(0002)α−Mg//(1–13)MgAl2O4 possesses the smallest misfit,i.e.,2.34%(fr).Both results of the experiment and crystallographic calculation demonstrate that the grain refinement of Mg-Al alloys is attributed to the MgAl_(2)O_(4)particles acting as the heterogeneous nucleation substrates forα-Mg grains.展开更多
Objective To understand the infectious characteristics of a hamster-adapted scrapie strain 263K with five different routes of infection including intracerebral (i.e.), intraperitoneal (i.p.), intragastrical (i.g.), in...Objective To understand the infectious characteristics of a hamster-adapted scrapie strain 263K with five different routes of infection including intracerebral (i.e.), intraperitoneal (i.p.), intragastrical (i.g.), intracardiac and intramuscular (i.m.) approaches. Methods Hamsters were infected with crude- or fine-prepared brain extracts. The neuropathological changes, PrPSc deposits, and patterns of PK-resistant PrP were analyzed by HE stain, immunohistochemistry (IHC) assay and Western blot. Reactive gliosis and neuron loss were evaluated by glial fibrillary acidic protein (GFAP) and neuron specific enolase (NSE) specific IHC. Results The animals inoculated in i.m. and Lp. ways with crude PrPSc extracts showed clinical signs at the average incubation of 69.212.8 and 65.5±3.9 days. Inoculation in i.c. and intracardiac ways with fine PrPSc extracts (0.00035 g) caused similar, but relative long incubation of around 90 days. Only one out of eight hamsters challenged in i.g way with low dosage (0.01 g) became ill after a much longer incubation (185 d), while all animals (4/4) with high dosage (0.04 g) developed clinical signs 105 days postinfection. The most remarkable spongiform degeneration and PrPSc deposits were found in brain stem among the five challenge groups generally. The number of GFAP-positive astrocytes increased distinctly in brain stems in all infection groups, while the number of NSE-positive cells decreased significantly in cerebrum, except i.c. group. The patterns of PK-resistant PrP in brains were basically identical among the five infection routes. Conclusion Typical TSE could be induced in hamsters by inoculating strain 263K in the five infection ways. The incubation periods in bioassays depend on infective dosage, administrating pathway and preparation of PrPSc. The neuropathological changes and PrPSc deposits seem to be related with regions and inoculating pathways.展开更多
The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For...The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For the solidification pattern,some specific cooling curves characteristics,such as the degree of undercooling at the beginning of eutectic solidif ication and at the end of solidifi cation,as well as the recalescence level,are identif ied to be more influenced by the inoculation technique.The degree of eutectic undercooling of the electrically melted base iron having 0.025% S,0.003% Al and 3.5% Ce is excessively high(39-40℃),generating a relatively high need for inoculation.Under these conditions,the in-mould inoculation has a more signif icant effect compared to ladle inoculation,especially at lower inoculant usage(less than 0.20 wt.%).Generally,the eff iciency of 0.05wt.% -0.15wt.% of alloy for in-mould inoculation is comparable to,or better than,that of 0.15wt.% -0.25wt.% addition in ladle inoculation procedures.In order to secure stable and controlled processes,representative thermal analysis parameters could be used,especially in thin wall grey iron castings production.展开更多
The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with...The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with different holding time were assessed by computer-aided cooling curve analysis.The results showed that Mg-3%Al alloy could be effectively refined by carbon inoculation.Slight fading phenomenon occurred with increasing the holding time to 60 min.Carbon inoculation could significantly influence the shape of cooling curves of Mg-3%Al melt.The nucleation starting and minimum temperatures increased.The recalescence undercooling and duration decreased to almost zero after carbon inoculation.The grain refining efficiency of carbon inoculation could be assessed by the shape of the cooling curve and solidification characteristic parameters including nucleation starting and minimum temperatures,recalescence undercooling and duration.展开更多
<strong>Objectives:</strong> The digestive track of mice and humans has always been an integral part of the pathogenesis of the Trypanosomes but is constantly overlooked. This realization opens up complete...<strong>Objectives:</strong> The digestive track of mice and humans has always been an integral part of the pathogenesis of the Trypanosomes but is constantly overlooked. This realization opens up completely new strategies for the development of trypanosomes vaccines, allowing approaches that parenteral delivery forms would not permit. The target of the study was to compare the haematological changes and immunological responses of trypanosomiasis model systems (mice and rats) inoculated orally and intraperitoneally and to observe the afterward effect of a controlled drug [Isometamidium chloride (ISM)] in the restoration of these initial parameters. <strong>Methods:</strong> To achieve this, a total of 40 rodents (20 rats and 20 mice) were purchased, then grouped into two [sixteen younger (1 - 5 weeks) and older (7 - 15 weeks) groups each]. They were further sub-grouped into five each. Body weights, Parasitaemia and Packed Cell Volume (PCV) were taken before, after inoculation and after treatment with ISM at 4 mg/kg. <strong>Results:</strong> Based on presumptive clinical diagnosis, all rodents inoculated intraperitoneally showed clinical signs of fluctuations in weight, PCV and parasitaemia levels before, after inoculations and after treatment compared to those inoculated orally with a significant difference (P < 0.05) observed. Both young and older rodents also responded differently to the inoculants and to the different methods of inoculation. But more deaths were recorded among the mice when compared to the rats. <strong>Conclusion: </strong>Although these non-transgenic models would not have offered a completely new methods to vaccine development, their differences in response to various methods of inoculations is an indication of an exciting research processes and could offer desired results, particularly where transgenic rodents are employed.展开更多
The characteristics of some elements in inoculant were analyzed.The effect of the morphology of instantaneous inoculant on its melting velocity was studied.When the inoculants pass through the same sieve number,the vo...The characteristics of some elements in inoculant were analyzed.The effect of the morphology of instantaneous inoculant on its melting velocity was studied.When the inoculants pass through the same sieve number,the volume and the ratio of surface area to volume are different.It is evident from the theoretical analysis and experiment under some conditions that the melting velocity of inoculant depends on the morphology of inoculant.The morphology of inoculant during production should be controlled carefully.展开更多
This experiment aimed to evaluate the ruminal degradability in situ of the dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of Guinea grass silages. The experimental de...This experiment aimed to evaluate the ruminal degradability in situ of the dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of Guinea grass silages. The experimental design was completely randomized with six treatments and six repetitions: Guinea grass silage, Guinea grass silage inoculated with 10% wheat bran, Guinea grass silage inoculated with 106 cfu/g of strains of Streptococcus bovis JB1;Guinea grass silage inoculated with 106 cfu/g of strains of Streptococcus bovis JB1 plus 10% of wheat bran;Guinea grass silage inoculated with 106 cfu/g of strains of Streptococcus bovis HC5;Guinea grass silage inoculated with 106 cfu/g of strains of Streptococcus bovis HC5 plus 10% of wheat bran. The silages inoculated with Streptococcus bovis and with added wheat bran resulted in higher values of ruminal degradability of DM, 32.76% and 32.17%, and of crude protein 38.28% and 37.89%. For the effective and potential degradability of DM, CP, NDF and ADF the highest values occurred for silages in these silages as well, in all passage rates. There is a similarity between the responses of Streptococcus bovis JB1 and the HC5, and the wheat bran enhanced the effectiveness of the microbial additive.展开更多
Carbide precipitates in Thin Wall Ductile Iron (TWDI) used for automotive applications needs to be eliminated or reduced for improved strength, ductility, crack propagation resistance and good machinability. Ductile i...Carbide precipitates in Thin Wall Ductile Iron (TWDI) used for automotive applications needs to be eliminated or reduced for improved strength, ductility, crack propagation resistance and good machinability. Ductile iron thin section profiles (≤3 mm) present danger of massive carbide precipitations in the as-cast sample. Precipitated carbide phase is brittle and negatively affects the mechanical properties of the iron matrix. The suppression of carbide formation is associated with the nucleating properties of the nodularizer and innoculant alloys. This treatment is vital in ensuring that carbide precipitation, flake graphite structure and non-nodular graphite phases are reduced or completely eliminated in the TWDI castings. Therefore, the temperature and technique of treatment would influence the yield of the process, and ultimately the mechanical properties. In this study, the effect of nodularization and inoculation treatment temperature on the microstructure and mechanical properties of TWDI castings is examined. The results indicate that good nodularity and nodule count with better percent elongations are achieved using low treatment temperatures in descending order of 1490°C, 1470°C and 1450°C, but have negative effect at lower treatment temperature of 1430°C. However, TWDI castings have superior properties in terms of nodule counts and nodularity at 1450°C. Treatment temperature does not produce significant influence on ultimate tensile strength (UTS) and hardness of TWDI castings. TWDI castings show poor nodularity, nodule count and ductility at higher inoculation treatment temperatures of 1550°C, 1530°C and 1510°C.展开更多
The hypereutectic region of grey cast iron has received very little attention especially for designing cast products by researchers. Due to its high carbon equivalence, hypereutectic grey iron poses some challenges es...The hypereutectic region of grey cast iron has received very little attention especially for designing cast products by researchers. Due to its high carbon equivalence, hypereutectic grey iron poses some challenges especially its tendency for grey to white transition (GWT) at this level of carbon content. However, hypereutectic grey iron possesses inherent properties that could be easily utilized for improved performance in automobile engines and brake pad system. Significantly, they could be modified for superior hardness, strength and toughness. This study presents the effect of microalloying on the mechanical behaviour of hypereutectic grey cast iron with carbon equivalence above 4.5. The first part of this work presented in this paper considers the addition of Cu-Ni and Cu-Ni-Mn to series of as-cast hypereutectic grey cast iron and their hardness and tensile strength were studied and compared. A total of 33 cast samples were obtained with the control sample. The examination of the micrographs revealed that graphite eutectics cells of Type A and A + D were obtained in the resulting microstructure. Results analyses showed that the ferrite forming tendency of silicon was suppressed due to the high carbon content of the as-cast hypereutectic grey iron coupled with the absence of inoculation which plays a great role in the graphite flake type, network, size and distribution. Cu-Ni microalloying was also confirmed to promote hardness with the hardening effect limit of nickel observed at 1.3% composition. For Cu-Mi-Mn addition, excess and free sulphur in the hyper- eutectic grey iron results in reverse effect of manganese on strength, hardness, reduced graphite flake size and shape.展开更多
Mining activities have caused significant land degradation globally,emphasizing the need for effective restoration.Microbial inoculants offer a promising solution for sustainable remediation by enhancing soil nutrient...Mining activities have caused significant land degradation globally,emphasizing the need for effective restoration.Microbial inoculants offer a promising solution for sustainable remediation by enhancing soil nutrients,enzyme activities,and microbial communities to support plant growth.However,the mechanisms by which inoculants influence soil microbes and their relationship with plant growth require further investigation.Metagenomic sequencing was employed for this study,based on a one-year greenhouse experiment,to elucidate the effects of Bacillus thuringiensis NL-11 on the microbial functions of abandoned mine soils.Our findings revealed that the application of microbial inoculants significantly enhanced the soil total carbon(TC),total sulfur(TS),organic carbon(SOC),available phosphorus(AP),ammonium(NH4+),urease,arylsulfatase,phosphatase,β-1,4-glucosidase(BG),β-1,4-N-acetylglucosaminidase(NAG).Moreover,this led to substantial improvements in plant height,as well as aboveground and belowground biomass.Microbial inoculants impacted functional gene structures without altering diversity.The normalized abundance of genes related to the degradation of carbon and nitrogen,methane metabolism,and nitrogen fixation were observed to increase,as well as the functional genes related to phosphorus cycling.Significant correlations were found between nutrient cycling gene abundance and plant biomass.Partial Least Squares Path Model analysis showed that microbial inoculants not only directly influenced plant biomass but also indirectly affected the plant biomass through C cycle modifications.This study highlights the role of microbial inoculants in promoting plant growth and soil restoration by improving soil properties and enhancing normalized abundance of nutrient cycling gene,making them essential for the recovery of abandoned mine sites.展开更多
Peanuts are important oilseed legume crops that are susceptible to contamination by Aspergillus flavus in soil,leading to serious economic losses.Previously,our research team developed the Aspergillus-Rihizobia coupli...Peanuts are important oilseed legume crops that are susceptible to contamination by Aspergillus flavus in soil,leading to serious economic losses.Previously,our research team developed the Aspergillus-Rihizobia coupling(ARC)microbial inoculants and found it can reduce A.flavus abundance in the soil and promote efficient nodulation in peanuts.However,the impact of ARC microbial inoculants on different resistant varieties of A.flavus remains unclear.In this study,we screened peanut varieties that were resistant and susceptible to A.flavus and evaluated their nodulation ability and growth performance after ARC microbial inoculants treatment in the field.The results demonstrated that the nodule number and nitrogenase activity of both varieties significantly increased after ARC microbial inoculants treatment,with the highly susceptible variety AH24 showing a greater increase.For photosynthetic parameters,both varieties also increased after ARC microbial inoculants treatment,but the increase was greater in the moderately resistant variety AH1 than in the highly susceptible variety AH24.Finally,we found that the yield and yield-related traits of the moderately resistant variety AH1 were better than those of the highly susceptible variety AH24.After ARC microbial inoculants treatment,the yield traits of both peanut varieties still increased significantly,but the degree of increase of the moderately resistant variety AH1 was smaller than that of the highly susceptible variety AH24.In addition,the abundance of A.flavus in the rhizosphere soil of the two varieties significantly decreased after ARC microbial inoculants treatment,with no significant difference between the varieties.These results indicated that ARC microbial inoculants exert differential effects on the nodulation and growth of different resistant peanut varieties and have a better effect on highly susceptible varieties.These results provide a solid theoretical basis for the efficient use of ARC microbial inoculants in the field of peanuts in the future.展开更多
Synthetic fertilizers are widely used to address the urgent challenge of ensuring food supplies for a growing world population in the context of climate change. However, their industrial production and use in agricult...Synthetic fertilizers are widely used to address the urgent challenge of ensuring food supplies for a growing world population in the context of climate change. However, their industrial production and use in agriculture have a negative impact on the environment and consequently on human health. While chemical fertilizers may not have to be abandoned in agricultural production systems, limiting their use could help to make agriculture sustainable and resilient to climate change. In Senegal, the level of mineral fertilizers used in market gardening has become alarming in the Niayes area. As a result, microbial biotechnologies have been promoted for biofertilizer production of common bean (Phaseolus vulgaris L.) cultivation. Rhizobial inoculums have thus been used to reduce the rate of chemical nitrogen fertilizers being applied in cropping systems. Several investigations in the laboratory, on experimental stations and in the field have shown a possibility of a significant reduction in the use of nitrogen fertilizers in common bean production. Conventional mineral fertilization use can be reduced from over 120 kg N/ha to 20 kg N/ha. This contributes both to a very significant reduction in the application rate with the same level of yield and to an improvement in the standard of living. In addition, the environmental impact of using chemical fertilizers can be mitigated. This study is a contribution to the promotion of biofertilizers adoption in agricultural systems.展开更多
Although the application of straw decomposing microorganism inoculants(SDMI)can accelerate straw decomposition,the underlying mechanisms affecting soil organic carbon(SOC)under different scenarios remain unclear.We co...Although the application of straw decomposing microorganism inoculants(SDMI)can accelerate straw decomposition,the underlying mechanisms affecting soil organic carbon(SOC)under different scenarios remain unclear.We conducted a meta-analysis using 226 observations from 86 studies on SOC changes under straw return with or without SDMI applications.Overall,our results indicated that straw with SDMI application increased the SOC stock by 1.51%at an initial carbon-to-nitrogen ratio(ICNR)>25(P<0.05),while the effect of ICNR≤25was insignificant.In particular,at ICNR>25,application of SDMI-treated straw increased SOC stocks in northern temperate continental areas(NTC)higher than in subtropical monsoon regions(STM).Furthermore,the straw with SDMI application increased higher SOC stocks in soils with pH>7.5 than those with pH≤7.5.In terms of agricultural management practices,SOC stocks were significantly higher in straw buried(SB),the experimental duration of straw return(EDSR)≥1 year,the straw return amount(SRA)>6,000 kg ha^(–1),and the SDMI application rate(SDMIR)>30 kg ha^(–1)conditions.The effect of straw with SDMI on SOC stocks under straw burying(SB)was significantly higher than that under straw mulching(SM)at ICNR≤25.At ICNR>25,EDSR,SDMIR,and the mean annual precipitation(MAP)were the main drivers of the effect of SDMI addition to straw on SOC stocks.Straw with SDMI induced SOC stock increases which increased with EDSR and decreased with increasing MAP.These findings provide a scientific basis for decision-makers and stakeholders to improve soil C management via the application of SDMI-amended straw at both regional and large scales.展开更多
The Agrobacterium-mediated transient expression system with conventional binary vectors is well established in tobacco leaves,while the same system applied to tomato leaflets has relatively low expression efficiency.H...The Agrobacterium-mediated transient expression system with conventional binary vectors is well established in tobacco leaves,while the same system applied to tomato leaflets has relatively low expression efficiency.However,impacts of the leaf age,inoculation method and incubation condition after Agrobacterium infiltration on transient protein expression efficiency are seldom investigated.In this study,we optimize Agrobacterium-mediated transient expression system using conventional binary vectors to achieve the high efficiency of target gene expression in tomato leaflets.We transiently express GFP and a nucleus-localized gene SlUVI4 fused with GFP in detached 10-,20-,and 30-day-old leaflets.The cutting points of leaflets are embedded in MS medium after the Agrobacterium-mediated vacuum infiltration,and all leaflets are kept in the dark before use.The 10-and 30-day-old leaflets have more damage than 20-day-old leaflets after the infiltration.展开更多
Microbial growth causes lamb spoilage.This study explored the spoilage ability of Latilactobacillus sakei,Serratia proteamaculans and Hafnia proteus in vacuum-packed raw lamb,including growth ability,degradation of pr...Microbial growth causes lamb spoilage.This study explored the spoilage ability of Latilactobacillus sakei,Serratia proteamaculans and Hafnia proteus in vacuum-packed raw lamb,including growth ability,degradation of protein and lipid,and change of volatile organic compounds(VOCs)profile,meanwhile screened the key VOCs produced by the targeted strains with meat background excluding,finally confirmed the volatile spoilage marker of vacuum-packaged lamb by comparing with our previous work.The results showed that L.sakei,S.proteamaculans and H.proteus had excellent growth ability.L.sakei inoculated group significantly reduced the pH value,showed higher trichloroacetic acid-soluble peptides content,and excellently degraded sarcoplasmic and myofibrillar proteins.About free amino acids,L.sakei significantly degraded serine,arginine and aspartic acid,while S.proteamaculans and H.proteus significantly degraded serine and lysine.In addition,L.sakei had the strongest effect on promoting free fatty acid production,followed by S.proteamaculans and finally H.proteus.Evaluating from various indicators,the co-culture of the three strains did not have any effect.The key volatiles produced by L.sakei were 1-hexanol,acetic acid and hexanoic acid,S.proteamaculans produced 1-hexanol and acetoin,and H.proteus produced 1-hexanol,acetic acid and acetoin.In the end,1-hexanol,hexanoic acid and acetoin were proven to be spoilage markers for vacuum-packaged and chilled lamb.This study can provide fundamental information for inhibiting and rapid identification of spoilage in vacuum-packaged lamb.展开更多
Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants ...Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants on microstructures and high-temperature mechanical properties of the as-built IN718 composites were investigated.According to statistical results of relative density and unmelted particle area in as-built alloys,the optimal energy of 112 J/mm^(3)was determined.It was observed that the precipitation of the MC carbide was significantly enhanced with the addition of Ti_(2)AlC,restricting the precipitation of the Laves phase.The MC particles were uniformly distributed along the subgrain boundaries,which contributed to the dispersion strengthening.Meanwhile,the MC particles served as nucleation sites for heterogeneous nucleation during the solidification process,facilitating the refinement of columnar and cellular grains.The simulated Scheil-Gulliver curves showed that the precipitation sequence of phases did not change with Ti_(2)AlC inoculants.The as-built 1%Ti_(2)AlC/IN718 sample demonstrated an ultimate tensile strength of 998.78 MPa and an elongation of 18.04%at 650℃,revealing a markedly improved mechanical performance compared with the LPBF-manufactured IN718 alloys.The high-temperature tensile strength of 1%Ti_(2)AlC/IN718 sample increased to 1197.99 MPa by heat treatment.It was suggested that dislocation strengthening and ordered strengthening were two most important reinforcement mechanisms.展开更多
The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioratio...The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau.展开更多
基金supported by a grant from National Program for Research of the National Association of Technical Universities-GNAC ARUT 2023.
文摘The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry air and combustion gas containing water vapour(natural gas burning).The oxidation is influenced by the gas atmosphere type,the iron alloying system,and the inoculating elements depending on the heating temperature.The weight gain increases from 0.001%-0.1%(400°C)to 0.05%-0.70%(600°C)and up to 0.10%-2.15%(800°C).No particular effects of the considered influencing factors are found when heating at 400°C,while at 600°C,mainly the oxidation gas atmosphere type shows a visible influence.At the highest heating temperature of 800°C,a limited increase of the weight gain is found for dry air atmosphere(up to 0.25%),but it drastically increases for combustion atmospheres(0.65%-2.15%).The water vapour presence in the combustion atmosphere is an important oxidising factor at 600-800°C.The alloying system appears to influence the oxidation behavior mainly at a heating temperature of 800°C in the combustion atmosphere,as evidenced by the lower weight gain in 5.25%silicon cast iron.Positive effects of inoculating elements increase with the heating temperature,with Ca and Ba-FeSi inoculation generally showing better performance.Irons inoculated with CaRE-FeSi exhibit a higher degree of oxidation.These results are in good relationship with the previous reported data:Ca-Ba-inoculation system appears to be better than simple Ca for improving the graphite parameters,while RE-bearing inoculant negatively affects the compactness degree of graphite particles in high-Si ductile irons.As the lower compactness degree is typical for graphite nodules in high-Si ductile irons,which negatively affects the oxidation resistance,it is necessary to employ specific metallurgical treatments to improve nodule quality.Inoculation,in particular,is a potential method to achieve this improvement.
文摘Cultivation of aerobic granules for simultaneous nitrification and denitrification in two sequencing batch airlift bioreactors was studied. Conventional activated floc and anaerobic granules served as main two inoculated sludge in the systems. Morphological variations of sludge in the reactors were observed. It was found that the cultivation of aerobic granules was closely associated with the kind of inoculated sludge. Round and regular aerobic granules were prevailed in both reactors, and the physical characteristics of the aerobic granules in terms of settling ability, specific gravity, and ratio of water containing were distinct when the inoculate sludge was different. Aerobic granules formed by seeding activated floc are more excellent in simultaneous nitrification and denitrification than that by aerobic granules formed from anaerobic granules. It was concluded that inoculated sludge plays a crucial role in the cultivation of aerobic granules for simultaneous nitrification and denitrification.
文摘Immune-deficient nude mice were inoculated with nude mouse derived Mycobacteriurn leprae by multiple routes (intravenously. subcutaneously at the foot pads and ears). The results showed that these inoculated animals were capable of producing a great number of Mycobacterium leprae to a level 10(11-12) per gram of tissue. and were detected histopathologically to have heavy leproniatous lesions. The dissemination of the infection was found particularly in sites with lower body temperature.The organisms have a partiality to striated muscles and peripheral nerves. The authors suggest that experimental leprosy in nude mice is a very useful tool for leprosy resarch. especially in countries without armadillos. Compared with the single-route inoculation reported previously. multiple-route inoculation is more available.
基金This work was supported by the National Natural Science Foundation of China(51871100).
文摘As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refining ratio of the inoculated Mg-Al alloys are systematically investigated.The results show that the minimum grain size of Mg-3Al alloy is achieved by adding 2wt.%MgAl_(2)O_(4)powder and this alloy exhibits higher grain refining ratio than Mg-5Al and Mg-8Al alloys.The crystallographic misfit calculation indicates the wellmatching and possible orientation relationships(ORs)betweenα-Mg and MgAl_(2)O_(4).Among these predicted ORs,[10–10]α−Mg//[110]MgAl2O4 in(0002)α−Mg//(1–13)MgAl2O4 possesses the smallest misfit,i.e.,2.34%(fr).Both results of the experiment and crystallographic calculation demonstrate that the grain refinement of Mg-Al alloys is attributed to the MgAl_(2)O_(4)particles acting as the heterogeneous nucleation substrates forα-Mg grains.
基金This work was supported by Chinese National Natural Science Foundation Grants 39928018,30070038 and 30130070, National High-tech Development Project (863 Project) 2001AA215391EU Project QLRT 2000 01441.
文摘Objective To understand the infectious characteristics of a hamster-adapted scrapie strain 263K with five different routes of infection including intracerebral (i.e.), intraperitoneal (i.p.), intragastrical (i.g.), intracardiac and intramuscular (i.m.) approaches. Methods Hamsters were infected with crude- or fine-prepared brain extracts. The neuropathological changes, PrPSc deposits, and patterns of PK-resistant PrP were analyzed by HE stain, immunohistochemistry (IHC) assay and Western blot. Reactive gliosis and neuron loss were evaluated by glial fibrillary acidic protein (GFAP) and neuron specific enolase (NSE) specific IHC. Results The animals inoculated in i.m. and Lp. ways with crude PrPSc extracts showed clinical signs at the average incubation of 69.212.8 and 65.5±3.9 days. Inoculation in i.c. and intracardiac ways with fine PrPSc extracts (0.00035 g) caused similar, but relative long incubation of around 90 days. Only one out of eight hamsters challenged in i.g way with low dosage (0.01 g) became ill after a much longer incubation (185 d), while all animals (4/4) with high dosage (0.04 g) developed clinical signs 105 days postinfection. The most remarkable spongiform degeneration and PrPSc deposits were found in brain stem among the five challenge groups generally. The number of GFAP-positive astrocytes increased distinctly in brain stems in all infection groups, while the number of NSE-positive cells decreased significantly in cerebrum, except i.c. group. The patterns of PK-resistant PrP in brains were basically identical among the five infection routes. Conclusion Typical TSE could be induced in hamsters by inoculating strain 263K in the five infection ways. The incubation periods in bioassays depend on infective dosage, administrating pathway and preparation of PrPSc. The neuropathological changes and PrPSc deposits seem to be related with regions and inoculating pathways.
文摘The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For the solidification pattern,some specific cooling curves characteristics,such as the degree of undercooling at the beginning of eutectic solidif ication and at the end of solidifi cation,as well as the recalescence level,are identif ied to be more influenced by the inoculation technique.The degree of eutectic undercooling of the electrically melted base iron having 0.025% S,0.003% Al and 3.5% Ce is excessively high(39-40℃),generating a relatively high need for inoculation.Under these conditions,the in-mould inoculation has a more signif icant effect compared to ladle inoculation,especially at lower inoculant usage(less than 0.20 wt.%).Generally,the eff iciency of 0.05wt.% -0.15wt.% of alloy for in-mould inoculation is comparable to,or better than,that of 0.15wt.% -0.25wt.% addition in ladle inoculation procedures.In order to secure stable and controlled processes,representative thermal analysis parameters could be used,especially in thin wall grey iron castings production.
基金Project(51574127)supported by the National Natural Science Foundation of ChinaProject(2014A030313221)supported by the Natural Science Foundation of Guangdong Province,China
文摘The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with different holding time were assessed by computer-aided cooling curve analysis.The results showed that Mg-3%Al alloy could be effectively refined by carbon inoculation.Slight fading phenomenon occurred with increasing the holding time to 60 min.Carbon inoculation could significantly influence the shape of cooling curves of Mg-3%Al melt.The nucleation starting and minimum temperatures increased.The recalescence undercooling and duration decreased to almost zero after carbon inoculation.The grain refining efficiency of carbon inoculation could be assessed by the shape of the cooling curve and solidification characteristic parameters including nucleation starting and minimum temperatures,recalescence undercooling and duration.
文摘<strong>Objectives:</strong> The digestive track of mice and humans has always been an integral part of the pathogenesis of the Trypanosomes but is constantly overlooked. This realization opens up completely new strategies for the development of trypanosomes vaccines, allowing approaches that parenteral delivery forms would not permit. The target of the study was to compare the haematological changes and immunological responses of trypanosomiasis model systems (mice and rats) inoculated orally and intraperitoneally and to observe the afterward effect of a controlled drug [Isometamidium chloride (ISM)] in the restoration of these initial parameters. <strong>Methods:</strong> To achieve this, a total of 40 rodents (20 rats and 20 mice) were purchased, then grouped into two [sixteen younger (1 - 5 weeks) and older (7 - 15 weeks) groups each]. They were further sub-grouped into five each. Body weights, Parasitaemia and Packed Cell Volume (PCV) were taken before, after inoculation and after treatment with ISM at 4 mg/kg. <strong>Results:</strong> Based on presumptive clinical diagnosis, all rodents inoculated intraperitoneally showed clinical signs of fluctuations in weight, PCV and parasitaemia levels before, after inoculations and after treatment compared to those inoculated orally with a significant difference (P < 0.05) observed. Both young and older rodents also responded differently to the inoculants and to the different methods of inoculation. But more deaths were recorded among the mice when compared to the rats. <strong>Conclusion: </strong>Although these non-transgenic models would not have offered a completely new methods to vaccine development, their differences in response to various methods of inoculations is an indication of an exciting research processes and could offer desired results, particularly where transgenic rodents are employed.
文摘The characteristics of some elements in inoculant were analyzed.The effect of the morphology of instantaneous inoculant on its melting velocity was studied.When the inoculants pass through the same sieve number,the volume and the ratio of surface area to volume are different.It is evident from the theoretical analysis and experiment under some conditions that the melting velocity of inoculant depends on the morphology of inoculant.The morphology of inoculant during production should be controlled carefully.
文摘This experiment aimed to evaluate the ruminal degradability in situ of the dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of Guinea grass silages. The experimental design was completely randomized with six treatments and six repetitions: Guinea grass silage, Guinea grass silage inoculated with 10% wheat bran, Guinea grass silage inoculated with 106 cfu/g of strains of Streptococcus bovis JB1;Guinea grass silage inoculated with 106 cfu/g of strains of Streptococcus bovis JB1 plus 10% of wheat bran;Guinea grass silage inoculated with 106 cfu/g of strains of Streptococcus bovis HC5;Guinea grass silage inoculated with 106 cfu/g of strains of Streptococcus bovis HC5 plus 10% of wheat bran. The silages inoculated with Streptococcus bovis and with added wheat bran resulted in higher values of ruminal degradability of DM, 32.76% and 32.17%, and of crude protein 38.28% and 37.89%. For the effective and potential degradability of DM, CP, NDF and ADF the highest values occurred for silages in these silages as well, in all passage rates. There is a similarity between the responses of Streptococcus bovis JB1 and the HC5, and the wheat bran enhanced the effectiveness of the microbial additive.
文摘Carbide precipitates in Thin Wall Ductile Iron (TWDI) used for automotive applications needs to be eliminated or reduced for improved strength, ductility, crack propagation resistance and good machinability. Ductile iron thin section profiles (≤3 mm) present danger of massive carbide precipitations in the as-cast sample. Precipitated carbide phase is brittle and negatively affects the mechanical properties of the iron matrix. The suppression of carbide formation is associated with the nucleating properties of the nodularizer and innoculant alloys. This treatment is vital in ensuring that carbide precipitation, flake graphite structure and non-nodular graphite phases are reduced or completely eliminated in the TWDI castings. Therefore, the temperature and technique of treatment would influence the yield of the process, and ultimately the mechanical properties. In this study, the effect of nodularization and inoculation treatment temperature on the microstructure and mechanical properties of TWDI castings is examined. The results indicate that good nodularity and nodule count with better percent elongations are achieved using low treatment temperatures in descending order of 1490°C, 1470°C and 1450°C, but have negative effect at lower treatment temperature of 1430°C. However, TWDI castings have superior properties in terms of nodule counts and nodularity at 1450°C. Treatment temperature does not produce significant influence on ultimate tensile strength (UTS) and hardness of TWDI castings. TWDI castings show poor nodularity, nodule count and ductility at higher inoculation treatment temperatures of 1550°C, 1530°C and 1510°C.
文摘The hypereutectic region of grey cast iron has received very little attention especially for designing cast products by researchers. Due to its high carbon equivalence, hypereutectic grey iron poses some challenges especially its tendency for grey to white transition (GWT) at this level of carbon content. However, hypereutectic grey iron possesses inherent properties that could be easily utilized for improved performance in automobile engines and brake pad system. Significantly, they could be modified for superior hardness, strength and toughness. This study presents the effect of microalloying on the mechanical behaviour of hypereutectic grey cast iron with carbon equivalence above 4.5. The first part of this work presented in this paper considers the addition of Cu-Ni and Cu-Ni-Mn to series of as-cast hypereutectic grey cast iron and their hardness and tensile strength were studied and compared. A total of 33 cast samples were obtained with the control sample. The examination of the micrographs revealed that graphite eutectics cells of Type A and A + D were obtained in the resulting microstructure. Results analyses showed that the ferrite forming tendency of silicon was suppressed due to the high carbon content of the as-cast hypereutectic grey iron coupled with the absence of inoculation which plays a great role in the graphite flake type, network, size and distribution. Cu-Ni microalloying was also confirmed to promote hardness with the hardening effect limit of nickel observed at 1.3% composition. For Cu-Mi-Mn addition, excess and free sulphur in the hyper- eutectic grey iron results in reverse effect of manganese on strength, hardness, reduced graphite flake size and shape.
基金supported by the Jiangsu Science and Technology Plan Project(No.BE2022420)the Innovation and Promotion of Forestry Science and Technology Program of Jiangsu Province(No.LYKJ[2021]30)+2 种基金the Scientific Research Project of Baishanzu National Park(No.2021ZDLY01)the Ningxia key research and development plan(No.2021BEG02010)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Mining activities have caused significant land degradation globally,emphasizing the need for effective restoration.Microbial inoculants offer a promising solution for sustainable remediation by enhancing soil nutrients,enzyme activities,and microbial communities to support plant growth.However,the mechanisms by which inoculants influence soil microbes and their relationship with plant growth require further investigation.Metagenomic sequencing was employed for this study,based on a one-year greenhouse experiment,to elucidate the effects of Bacillus thuringiensis NL-11 on the microbial functions of abandoned mine soils.Our findings revealed that the application of microbial inoculants significantly enhanced the soil total carbon(TC),total sulfur(TS),organic carbon(SOC),available phosphorus(AP),ammonium(NH4+),urease,arylsulfatase,phosphatase,β-1,4-glucosidase(BG),β-1,4-N-acetylglucosaminidase(NAG).Moreover,this led to substantial improvements in plant height,as well as aboveground and belowground biomass.Microbial inoculants impacted functional gene structures without altering diversity.The normalized abundance of genes related to the degradation of carbon and nitrogen,methane metabolism,and nitrogen fixation were observed to increase,as well as the functional genes related to phosphorus cycling.Significant correlations were found between nutrient cycling gene abundance and plant biomass.Partial Least Squares Path Model analysis showed that microbial inoculants not only directly influenced plant biomass but also indirectly affected the plant biomass through C cycle modifications.This study highlights the role of microbial inoculants in promoting plant growth and soil restoration by improving soil properties and enhancing normalized abundance of nutrient cycling gene,making them essential for the recovery of abandoned mine sites.
基金supported by the Agricultural Science and Technology Innovation Program(CAAS-ZDRW202416)the Foundation of Hubei Hongshan Laboratory(2021hszd015)+1 种基金the Science and Technology Major Projects of Hubei Province(2023BBA002)the Knowledge Innovation Program of Wuhan-Basi Research(2023020201010126)。
文摘Peanuts are important oilseed legume crops that are susceptible to contamination by Aspergillus flavus in soil,leading to serious economic losses.Previously,our research team developed the Aspergillus-Rihizobia coupling(ARC)microbial inoculants and found it can reduce A.flavus abundance in the soil and promote efficient nodulation in peanuts.However,the impact of ARC microbial inoculants on different resistant varieties of A.flavus remains unclear.In this study,we screened peanut varieties that were resistant and susceptible to A.flavus and evaluated their nodulation ability and growth performance after ARC microbial inoculants treatment in the field.The results demonstrated that the nodule number and nitrogenase activity of both varieties significantly increased after ARC microbial inoculants treatment,with the highly susceptible variety AH24 showing a greater increase.For photosynthetic parameters,both varieties also increased after ARC microbial inoculants treatment,but the increase was greater in the moderately resistant variety AH1 than in the highly susceptible variety AH24.Finally,we found that the yield and yield-related traits of the moderately resistant variety AH1 were better than those of the highly susceptible variety AH24.After ARC microbial inoculants treatment,the yield traits of both peanut varieties still increased significantly,but the degree of increase of the moderately resistant variety AH1 was smaller than that of the highly susceptible variety AH24.In addition,the abundance of A.flavus in the rhizosphere soil of the two varieties significantly decreased after ARC microbial inoculants treatment,with no significant difference between the varieties.These results indicated that ARC microbial inoculants exert differential effects on the nodulation and growth of different resistant peanut varieties and have a better effect on highly susceptible varieties.These results provide a solid theoretical basis for the efficient use of ARC microbial inoculants in the field of peanuts in the future.
文摘Synthetic fertilizers are widely used to address the urgent challenge of ensuring food supplies for a growing world population in the context of climate change. However, their industrial production and use in agriculture have a negative impact on the environment and consequently on human health. While chemical fertilizers may not have to be abandoned in agricultural production systems, limiting their use could help to make agriculture sustainable and resilient to climate change. In Senegal, the level of mineral fertilizers used in market gardening has become alarming in the Niayes area. As a result, microbial biotechnologies have been promoted for biofertilizer production of common bean (Phaseolus vulgaris L.) cultivation. Rhizobial inoculums have thus been used to reduce the rate of chemical nitrogen fertilizers being applied in cropping systems. Several investigations in the laboratory, on experimental stations and in the field have shown a possibility of a significant reduction in the use of nitrogen fertilizers in common bean production. Conventional mineral fertilization use can be reduced from over 120 kg N/ha to 20 kg N/ha. This contributes both to a very significant reduction in the application rate with the same level of yield and to an improvement in the standard of living. In addition, the environmental impact of using chemical fertilizers can be mitigated. This study is a contribution to the promotion of biofertilizers adoption in agricultural systems.
基金supported by the Key Science and Technology Project of Anhui Province,China(2023n06020056)the National Natural Science Foundation of China(32071628)the Colleges and Universities Science Foundation of Anhui Province,China(2024AH020002)。
文摘Although the application of straw decomposing microorganism inoculants(SDMI)can accelerate straw decomposition,the underlying mechanisms affecting soil organic carbon(SOC)under different scenarios remain unclear.We conducted a meta-analysis using 226 observations from 86 studies on SOC changes under straw return with or without SDMI applications.Overall,our results indicated that straw with SDMI application increased the SOC stock by 1.51%at an initial carbon-to-nitrogen ratio(ICNR)>25(P<0.05),while the effect of ICNR≤25was insignificant.In particular,at ICNR>25,application of SDMI-treated straw increased SOC stocks in northern temperate continental areas(NTC)higher than in subtropical monsoon regions(STM).Furthermore,the straw with SDMI application increased higher SOC stocks in soils with pH>7.5 than those with pH≤7.5.In terms of agricultural management practices,SOC stocks were significantly higher in straw buried(SB),the experimental duration of straw return(EDSR)≥1 year,the straw return amount(SRA)>6,000 kg ha^(–1),and the SDMI application rate(SDMIR)>30 kg ha^(–1)conditions.The effect of straw with SDMI on SOC stocks under straw burying(SB)was significantly higher than that under straw mulching(SM)at ICNR≤25.At ICNR>25,EDSR,SDMIR,and the mean annual precipitation(MAP)were the main drivers of the effect of SDMI addition to straw on SOC stocks.Straw with SDMI induced SOC stock increases which increased with EDSR and decreased with increasing MAP.These findings provide a scientific basis for decision-makers and stakeholders to improve soil C management via the application of SDMI-amended straw at both regional and large scales.
基金support of Taishan Scholar Foundation of Shandong Province(tsqn201909073,tsqn201812034)National Natural Science Foundation of China(31872951)。
文摘The Agrobacterium-mediated transient expression system with conventional binary vectors is well established in tobacco leaves,while the same system applied to tomato leaflets has relatively low expression efficiency.However,impacts of the leaf age,inoculation method and incubation condition after Agrobacterium infiltration on transient protein expression efficiency are seldom investigated.In this study,we optimize Agrobacterium-mediated transient expression system using conventional binary vectors to achieve the high efficiency of target gene expression in tomato leaflets.We transiently express GFP and a nucleus-localized gene SlUVI4 fused with GFP in detached 10-,20-,and 30-day-old leaflets.The cutting points of leaflets are embedded in MS medium after the Agrobacterium-mediated vacuum infiltration,and all leaflets are kept in the dark before use.The 10-and 30-day-old leaflets have more damage than 20-day-old leaflets after the infiltration.
基金supported by the China Agriculture Research System of Ministry of Finance of the People’s Republic of China(MOF)Ministry of Agriculture+1 种基金Rural Affairs of the People’s Republic of China(MARA)(CARS-38)S&T Program of Hebei(215A7101D).
文摘Microbial growth causes lamb spoilage.This study explored the spoilage ability of Latilactobacillus sakei,Serratia proteamaculans and Hafnia proteus in vacuum-packed raw lamb,including growth ability,degradation of protein and lipid,and change of volatile organic compounds(VOCs)profile,meanwhile screened the key VOCs produced by the targeted strains with meat background excluding,finally confirmed the volatile spoilage marker of vacuum-packaged lamb by comparing with our previous work.The results showed that L.sakei,S.proteamaculans and H.proteus had excellent growth ability.L.sakei inoculated group significantly reduced the pH value,showed higher trichloroacetic acid-soluble peptides content,and excellently degraded sarcoplasmic and myofibrillar proteins.About free amino acids,L.sakei significantly degraded serine,arginine and aspartic acid,while S.proteamaculans and H.proteus significantly degraded serine and lysine.In addition,L.sakei had the strongest effect on promoting free fatty acid production,followed by S.proteamaculans and finally H.proteus.Evaluating from various indicators,the co-culture of the three strains did not have any effect.The key volatiles produced by L.sakei were 1-hexanol,acetic acid and hexanoic acid,S.proteamaculans produced 1-hexanol and acetoin,and H.proteus produced 1-hexanol,acetic acid and acetoin.In the end,1-hexanol,hexanoic acid and acetoin were proven to be spoilage markers for vacuum-packaged and chilled lamb.This study can provide fundamental information for inhibiting and rapid identification of spoilage in vacuum-packaged lamb.
基金supported by the National Natural Science Foundation of China(Nos.52374396 and 52122409).
文摘Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants on microstructures and high-temperature mechanical properties of the as-built IN718 composites were investigated.According to statistical results of relative density and unmelted particle area in as-built alloys,the optimal energy of 112 J/mm^(3)was determined.It was observed that the precipitation of the MC carbide was significantly enhanced with the addition of Ti_(2)AlC,restricting the precipitation of the Laves phase.The MC particles were uniformly distributed along the subgrain boundaries,which contributed to the dispersion strengthening.Meanwhile,the MC particles served as nucleation sites for heterogeneous nucleation during the solidification process,facilitating the refinement of columnar and cellular grains.The simulated Scheil-Gulliver curves showed that the precipitation sequence of phases did not change with Ti_(2)AlC inoculants.The as-built 1%Ti_(2)AlC/IN718 sample demonstrated an ultimate tensile strength of 998.78 MPa and an elongation of 18.04%at 650℃,revealing a markedly improved mechanical performance compared with the LPBF-manufactured IN718 alloys.The high-temperature tensile strength of 1%Ti_(2)AlC/IN718 sample increased to 1197.99 MPa by heat treatment.It was suggested that dislocation strengthening and ordered strengthening were two most important reinforcement mechanisms.
基金funded by the National Key R&D Program of China(2022YFB4202102)the Key R&D Program of Ningxia Hui Autonomous Region(2022BEG02003)the Excellent Member of Youth Innovation Promotion Association CAS(No.Y202085)。
文摘The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau.