In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differ...In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differential rotating rear-body control-guided projectile to address the situation of satellite signal flickering and loss in projectile navigation systems due to environmental limitations.First,establish the system state and measurement equation when receiving satellite signals normally.Second,a seven-degree-of-freedom external ballistic model is constructed,and the ideal trajectory output from the ballistic model is used to provide the virtual motion state of the projectile,which is input into a filter as a substitute observation when satellite signals are lost.Finally,an adaptive Kalman filter(AKF)is designed,the proposed adaptive Kalman filter can accurately adjust the estimation error covariance matrix and Kalman gain in real-time based on information covariance mismatch.The simulation results show that compared to the classical Kalman filter,it can reduce the average positioning error by more than 38.21%in the case of short-term and full-range loss of satellite signals,providing a new idea for the integrated navigation of projectiles with incomplete information under the condition of satellite signal loss.展开更多
The features of carrier-based aircraft’s navigation systems during the approach and landing phases are investigated.A new adaptive Kalman filter with unknown state noise statistics is proposed to improve the accuracy...The features of carrier-based aircraft’s navigation systems during the approach and landing phases are investigated.A new adaptive Kalman filter with unknown state noise statistics is proposed to improve the accuracy of the INS/GNSS integrated navigation system.The adaptive filtering algorithm aims to estimate and adapt the unknown state noise covariance Q in high dynamic conditions,when the measurement noise covariance R is assumed to be known empirically in advance.The new adaptive Kalman filter based on the innovation sequence and pseudo-measurement vector approach makes it more effective to estimate and adapt Q.The simulation results and semi-physical experiments show that the application of the proposed adaptive Kalman filter can guarantee a higher estimation accuracy of the state variables.展开更多
基金funded by the National Natural Science Foundation of China (Grant No. 62471048)Open Fund Project of Beijing Key Laboratory of High Dynamic Navigation TechnologyKey Laboratory Fund Project of Modern Measurement and Control Technology, Ministry of Education
文摘In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differential rotating rear-body control-guided projectile to address the situation of satellite signal flickering and loss in projectile navigation systems due to environmental limitations.First,establish the system state and measurement equation when receiving satellite signals normally.Second,a seven-degree-of-freedom external ballistic model is constructed,and the ideal trajectory output from the ballistic model is used to provide the virtual motion state of the projectile,which is input into a filter as a substitute observation when satellite signals are lost.Finally,an adaptive Kalman filter(AKF)is designed,the proposed adaptive Kalman filter can accurately adjust the estimation error covariance matrix and Kalman gain in real-time based on information covariance mismatch.The simulation results show that compared to the classical Kalman filter,it can reduce the average positioning error by more than 38.21%in the case of short-term and full-range loss of satellite signals,providing a new idea for the integrated navigation of projectiles with incomplete information under the condition of satellite signal loss.
基金supported by the project“Component’s digital transformation methods'fundamental research for micro-and nanosystems”(No.#0705-2020-0041).
文摘The features of carrier-based aircraft’s navigation systems during the approach and landing phases are investigated.A new adaptive Kalman filter with unknown state noise statistics is proposed to improve the accuracy of the INS/GNSS integrated navigation system.The adaptive filtering algorithm aims to estimate and adapt the unknown state noise covariance Q in high dynamic conditions,when the measurement noise covariance R is assumed to be known empirically in advance.The new adaptive Kalman filter based on the innovation sequence and pseudo-measurement vector approach makes it more effective to estimate and adapt Q.The simulation results and semi-physical experiments show that the application of the proposed adaptive Kalman filter can guarantee a higher estimation accuracy of the state variables.