In a series of publications, the hypothesis of a special-type of endo-polyploidy, marked by 4-chromatid chromosomes (diplochromosomes), in the initiation of tumorigenesis has been presented from in vitro experiments. ...In a series of publications, the hypothesis of a special-type of endo-polyploidy, marked by 4-chromatid chromosomes (diplochromosomes), in the initiation of tumorigenesis has been presented from in vitro experiments. This review uses cellular happenings in benign pre-neoplasia to substantiate this idea, which appears to be linked to the wound-healing process of injured tissue. Rarer association between a wound healing process and a cancer occurrence has long been known. The wound healing multi-program-system involved a phase of tetraploidy that showed diplochromosomes. The hypothesis is that the inflammatory phase may not always be sufficient in getting rid of dead and damaged cells (by apoptosis and autophagy), such that cells with genomic damage (DNA breakage) may survive by genomic repair associated with change to diplochromosomal tetraploidy. In vitro data have shown division of these cells to be an orderly, mechanistic two-step, meiotic-like system, resulting in only two types of progeny cells: 4n/4C/G1 and 2n/2C/G1 pseudo-diploid cells with hyperplastic-like growth-morphology. In vivo damage to tissues can be from many sources for example, physical, toxic environment or from a disease as in Barrett’s esophagus (BE) with acid reflux into the esophagus. For this condition, it is acknowledged that damage of the esophagus lining is a pre-condition to hyperplastic lesions of pre-neoplasia. These initial lesions were from “diploid” propagating cells and, 4n cells with G2 genomic content (no mitosis) accumulated in these lesions before a change to dysplasia. Cell cycle kinetics put these 4n cells in G1, which with S-phase entry would lead to asymmetric tetraploid mitoses, characteristic for dysplastic lesions. This change in hyperplasia to dysplasia is the root-essential condition for a potential progression of pre-neoplasia to cancer. In BE the hyperplastic lesion showed increasing gains of cells with inactivated p53 and p16[ink4a] genes, which destroyed the retinoblastoma (Rb) protein-control over S-phase entry from G1. Rb-protein is a key controller of cycling advancement from G1 (also for normal cells), and is frequently inactivated in tumor cells. Thus in BE, 4n/4C/G1 cells with mutated p53 and p16[ink4a] genes gained cycling ability to tetraploid aneuploid cell cycles, which constituted the change from hyperplasia to dysplastic lesions. In general, such lesions have high predictive value for a cancerous change. Proliferation rates of pre-neoplasia and progression have been shown to be increased by a component of the wound healing program.展开更多
Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and i...Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.展开更多
The results obtained from the characterization of a copper deposit on indium doped tin oxide (ITO), inked with natural dye extracted from the Lactarius indigo fungus, for use in Gratzel type solar cells are reported. ...The results obtained from the characterization of a copper deposit on indium doped tin oxide (ITO), inked with natural dye extracted from the Lactarius indigo fungus, for use in Gratzel type solar cells are reported. An electrolyte composed of 0.1 M HNO<sub>3</sub> and 0.5 M CuSO<sub>4</sub> was used, this solution was prepared for copper deposits on the ITO. Cyclic voltammetry was performed at different scan rates to obtain the reduction zone for deposition between potentials of ?100 to ?500 mV. The dye was obtained from the indigo Lactarius fungus from maceration, once the inked deposits were obtained, characterizations were performed, the initial test was to obtain the Ultraviolet-Visible (UV-visible) of the pure dye, and later the same test was performed on the inked oxide. Electrochemical Impedance Spectroscopy (EIS) was performed on the samples, as well as Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), to characterize the material properties for its application.展开更多
In this study,an enzyme 1linked immunosorbent assay(ELISA)was established to detect beef and 1amb components,and its performance was tested.Double-antibody sandwich ELISA was adopted and determined a coating concentra...In this study,an enzyme 1linked immunosorbent assay(ELISA)was established to detect beef and 1amb components,and its performance was tested.Double-antibody sandwich ELISA was adopted and determined a coating concentration of capture antibody 3G5 of 1:4000,a working concentration of enzyme-labeled antibody 2E7-horseradish peroxidase(HRP)of 1:1000,a sample incubation time of 60 min and a detection antibody reaction time of 60 min.The specificity,sensitivity,repeatability and stability of this assay were detemmined.The limit of detection for beef and 1amb skeleta1 muscle troponin I was 45 mg/kg,the inter-assay and intra-assay recovery rates ranged from 80.4%to 115.7%,the coefficients of variation were below 13.6%,and the cIoss reaction rates of the tissue components of chicken,duck and fish were below 13.4%.The sandwich ELISA method established in this study is stable and has high accuracy.The test results were consistent with the polymerase chain reaction(PCR)method at 50 and 100 g/kg-Therefore,this ELISA method can be used to quantitatively detect beef and 1amb components in meat products.展开更多
An improved method of immuno-electrophoresis, named enzyme-linked cellulose acetatemembrane immuno-electrophoresis (ELCAIE), is reported here for the detection of ribgrass mosaic virus with high sensitivity and rapidi...An improved method of immuno-electrophoresis, named enzyme-linked cellulose acetatemembrane immuno-electrophoresis (ELCAIE), is reported here for the detection of ribgrass mosaic virus with high sensitivity and rapidity. Enzyme-linked antibody was used in combination with immuno-electrophoresis on cellulose acetatemembrane.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,w...Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,with their multifaceted and intricate designs,some robots often grapple with motion and functionality issues when confronted with tight spaces characterized by small cross-sectional dimensions.In this study,drawing inspiration from the high aspect ratio and undulating swimming patterns of snakes,a millimeter-scale,snake-like robot was designed and fabricated via a combination of extrusion-based four-dimensional(4D)printing and magnetic-responsive intelligent functional inks.A sophisticated motion control strategy was also developed,which enables the robots to perform various dynamic movements,such as undulating swimming,precise turns,graceful circular motions,and coordinated cluster movements,under diverse magnetic field variations.As a potential application,the snake robot can navigate and release drugs in a model coronary intervention vessel with tortuous channels and fluid filling.The novel design and promising applications of this snake robot are invaluable tools in future medical surgeries and interventions.展开更多
As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires com...As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.展开更多
In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjuste...In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.展开更多
This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes...This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes the artistic characteristics of digital ink wash texture materials.The research focuses on key aspects such as the ink brushstrokes with the combination of emptiness and reality,the profound and serene ink wash space,and the extremely ingenious position layout.It proposes a construction path of digital ink wash texture materials based on the Blender material node system.This method makes use of the flexibility of the Blender material node system to successfully simulate highly realistic digital ink wash textures.It can not only construct static ink wash textures but also realize the dynamic transformation of static ink wash works through animation nodes and procedural control,thereby enhancing the artistic expression of digital ink wash works.The proposal and implementation of this method expand the application scope of the Blender material node system,help deeply explore the potential of digital ink wash art,and open up a brand new research path for constructing digital ink wash textures.展开更多
Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct in...Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct ink writing(DIW)is one of the most popular 3D printing techniques owing to its ability to print multiple materials simultaneously and its high compatibility with printing inks.However,DIW presents significant challenges,particularly in the printing of high-performance polymers.The main challenges are as follows:1.The rigid structures and reaction kinetics of high-performance polymers make developing new inks difficult.2.The limited types of available high-performance polymers underscore the need for new DIW-suitable materials.3.Layer-by-layer stacking weakens interlayer bonding,affecting the mechanical properties of the printed product.4.The accuracy and speed of DIW printing are insufficient for large-scale manufacturing.After introducing the topic,the requirements for DIW printing inks are first reviewed,emphasizing the importance of thixotropic agents.Then,research progress regarding DIW printing of high-performance polymers is comprehensively reviewed according to the requirements of different polymer inks.Additionally,the applications of these materials across various fields are summarized.Finally,the challenges in DIW printing of high-performance polymers,along with corresponding solutions and future development prospects,are discussed in detail.展开更多
Conversation B Susie:I know.Pencils are also better for drawing.You can make lines lighter or darker.Sam:But you have to sharpen pencils or add lead to them.Susie:You do.But pencils last longer than pens.Pen ink can d...Conversation B Susie:I know.Pencils are also better for drawing.You can make lines lighter or darker.Sam:But you have to sharpen pencils or add lead to them.Susie:You do.But pencils last longer than pens.Pen ink can dry out,but pencil lead doesn’t.Sam:But words look neater when you write in pen.Susie:They do.So,which pen do you want?Sam:One with blue ink,thanks.展开更多
Flexible electronic technology has laid the foundation for complex human-computer interaction system,and has attracted great attention in the field of human motion detection and soft robotics.Graphene has received an ...Flexible electronic technology has laid the foundation for complex human-computer interaction system,and has attracted great attention in the field of human motion detection and soft robotics.Graphene has received an extensive attention due to its excellent electrical conductivity;however,how to use it to fabricate wearable flexible sensors with complex structures remains challenging.In this study,we studied the rheological behavior of graphene/polydimethylsiloxane ink and proposed an optimal graphene ratio,which makes the ink have an good printability and conductivity at the same time.Then,based on the theory of Peano fractal layout,we proposed a two-dimensional structure that can withstand multi-directional tension by replacing the traditional arris structure with the arc structure.After that,we manufactured circular arc fractal structure sensor by adjusting ink composition and printing structure through direct ink writing method.Finally,we evaluated the detection performance and repeatability of the sensor.This method provides a simple and effective solution for fabricating wearable flexible sensors and exhibits the potential to fabricate 3D complex flexible electronic devices.展开更多
As sunlight streams through floor-to-ceiling windows and falls gently upon the bookshelves,readers-seated or standing-immerse themselves in the rich literary world created by ink and paper.
This study systemmatically investigated the effects of solid content and dispersant content on the physicochemical properties of ZnO-SnO_(2) composite ink.The experimental results show that even with the use of low-mo...This study systemmatically investigated the effects of solid content and dispersant content on the physicochemical properties of ZnO-SnO_(2) composite ink.The experimental results show that even with the use of low-molecular-weight PEG400 dispersant,gas-sensitive ink with high solid content and good suspension stability can be obtained,which is advantageous for low-temperature film formation and can effectively prevent property changes and film crack of high-temperature-sintering-induced material.Under this condition,the ink at a 15wt%solid content and 2wt%-10wt%PEG400 has good film-forming ability and high adhesion strength on the micro-electromechanical system(MEMS)micro-hotplates.Especially,the MEMS sensor printed using the ink of 6wt%PEG400 shows highest sensitivity,favorable impact resistance,thermal shock resistance,and up to 8 years of service life.展开更多
文摘In a series of publications, the hypothesis of a special-type of endo-polyploidy, marked by 4-chromatid chromosomes (diplochromosomes), in the initiation of tumorigenesis has been presented from in vitro experiments. This review uses cellular happenings in benign pre-neoplasia to substantiate this idea, which appears to be linked to the wound-healing process of injured tissue. Rarer association between a wound healing process and a cancer occurrence has long been known. The wound healing multi-program-system involved a phase of tetraploidy that showed diplochromosomes. The hypothesis is that the inflammatory phase may not always be sufficient in getting rid of dead and damaged cells (by apoptosis and autophagy), such that cells with genomic damage (DNA breakage) may survive by genomic repair associated with change to diplochromosomal tetraploidy. In vitro data have shown division of these cells to be an orderly, mechanistic two-step, meiotic-like system, resulting in only two types of progeny cells: 4n/4C/G1 and 2n/2C/G1 pseudo-diploid cells with hyperplastic-like growth-morphology. In vivo damage to tissues can be from many sources for example, physical, toxic environment or from a disease as in Barrett’s esophagus (BE) with acid reflux into the esophagus. For this condition, it is acknowledged that damage of the esophagus lining is a pre-condition to hyperplastic lesions of pre-neoplasia. These initial lesions were from “diploid” propagating cells and, 4n cells with G2 genomic content (no mitosis) accumulated in these lesions before a change to dysplasia. Cell cycle kinetics put these 4n cells in G1, which with S-phase entry would lead to asymmetric tetraploid mitoses, characteristic for dysplastic lesions. This change in hyperplasia to dysplasia is the root-essential condition for a potential progression of pre-neoplasia to cancer. In BE the hyperplastic lesion showed increasing gains of cells with inactivated p53 and p16[ink4a] genes, which destroyed the retinoblastoma (Rb) protein-control over S-phase entry from G1. Rb-protein is a key controller of cycling advancement from G1 (also for normal cells), and is frequently inactivated in tumor cells. Thus in BE, 4n/4C/G1 cells with mutated p53 and p16[ink4a] genes gained cycling ability to tetraploid aneuploid cell cycles, which constituted the change from hyperplasia to dysplastic lesions. In general, such lesions have high predictive value for a cancerous change. Proliferation rates of pre-neoplasia and progression have been shown to be increased by a component of the wound healing program.
基金funded by The Hong Kong Polytechnic University(Project No.1-WZ1Y,1-YXAK,1-W21C).
文摘Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.
文摘The results obtained from the characterization of a copper deposit on indium doped tin oxide (ITO), inked with natural dye extracted from the Lactarius indigo fungus, for use in Gratzel type solar cells are reported. An electrolyte composed of 0.1 M HNO<sub>3</sub> and 0.5 M CuSO<sub>4</sub> was used, this solution was prepared for copper deposits on the ITO. Cyclic voltammetry was performed at different scan rates to obtain the reduction zone for deposition between potentials of ?100 to ?500 mV. The dye was obtained from the indigo Lactarius fungus from maceration, once the inked deposits were obtained, characterizations were performed, the initial test was to obtain the Ultraviolet-Visible (UV-visible) of the pure dye, and later the same test was performed on the inked oxide. Electrochemical Impedance Spectroscopy (EIS) was performed on the samples, as well as Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), to characterize the material properties for its application.
基金This research was funded by Hebei Provincial Department of Science and Technology(21375501D)the Hebei Academy of Sciences(2019Q01).
文摘In this study,an enzyme 1linked immunosorbent assay(ELISA)was established to detect beef and 1amb components,and its performance was tested.Double-antibody sandwich ELISA was adopted and determined a coating concentration of capture antibody 3G5 of 1:4000,a working concentration of enzyme-labeled antibody 2E7-horseradish peroxidase(HRP)of 1:1000,a sample incubation time of 60 min and a detection antibody reaction time of 60 min.The specificity,sensitivity,repeatability and stability of this assay were detemmined.The limit of detection for beef and 1amb skeleta1 muscle troponin I was 45 mg/kg,the inter-assay and intra-assay recovery rates ranged from 80.4%to 115.7%,the coefficients of variation were below 13.6%,and the cIoss reaction rates of the tissue components of chicken,duck and fish were below 13.4%.The sandwich ELISA method established in this study is stable and has high accuracy.The test results were consistent with the polymerase chain reaction(PCR)method at 50 and 100 g/kg-Therefore,this ELISA method can be used to quantitatively detect beef and 1amb components in meat products.
文摘An improved method of immuno-electrophoresis, named enzyme-linked cellulose acetatemembrane immuno-electrophoresis (ELCAIE), is reported here for the detection of ribgrass mosaic virus with high sensitivity and rapidity. Enzyme-linked antibody was used in combination with immuno-electrophoresis on cellulose acetatemembrane.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
基金the National Natural Science Foundation of China(Nos.52105421 and 52373050)the Guangdong Provincial Natural Science Foundation,China(No.2022A1515011621)+1 种基金the Science and Technology Projects in Guangzhou,China(Nos.202102080330 and 2024A04J6446)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.22qntd0101).
文摘Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,with their multifaceted and intricate designs,some robots often grapple with motion and functionality issues when confronted with tight spaces characterized by small cross-sectional dimensions.In this study,drawing inspiration from the high aspect ratio and undulating swimming patterns of snakes,a millimeter-scale,snake-like robot was designed and fabricated via a combination of extrusion-based four-dimensional(4D)printing and magnetic-responsive intelligent functional inks.A sophisticated motion control strategy was also developed,which enables the robots to perform various dynamic movements,such as undulating swimming,precise turns,graceful circular motions,and coordinated cluster movements,under diverse magnetic field variations.As a potential application,the snake robot can navigate and release drugs in a model coronary intervention vessel with tortuous channels and fluid filling.The novel design and promising applications of this snake robot are invaluable tools in future medical surgeries and interventions.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107).
文摘As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.
文摘In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.
基金Research results of the General Scientific Research Project of Zhejiang Education Department in 2024,“Research on the Digitalization of Song Yun Ink Painting-Taking the Ten Scenes of West Lake as an Example”(Project No.:Y202455200).
文摘This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes the artistic characteristics of digital ink wash texture materials.The research focuses on key aspects such as the ink brushstrokes with the combination of emptiness and reality,the profound and serene ink wash space,and the extremely ingenious position layout.It proposes a construction path of digital ink wash texture materials based on the Blender material node system.This method makes use of the flexibility of the Blender material node system to successfully simulate highly realistic digital ink wash textures.It can not only construct static ink wash textures but also realize the dynamic transformation of static ink wash works through animation nodes and procedural control,thereby enhancing the artistic expression of digital ink wash works.The proposal and implementation of this method expand the application scope of the Blender material node system,help deeply explore the potential of digital ink wash art,and open up a brand new research path for constructing digital ink wash textures.
基金supported by National Key Research and Development Program of China(Grant No.2022YFB3809000)Major Science and Technology Project of Gansu Province(Grant No.23ZDGA011)+1 种基金National Natural Science Foundation of China(Grant No.22275199,52105224)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB04701022021).
文摘Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct ink writing(DIW)is one of the most popular 3D printing techniques owing to its ability to print multiple materials simultaneously and its high compatibility with printing inks.However,DIW presents significant challenges,particularly in the printing of high-performance polymers.The main challenges are as follows:1.The rigid structures and reaction kinetics of high-performance polymers make developing new inks difficult.2.The limited types of available high-performance polymers underscore the need for new DIW-suitable materials.3.Layer-by-layer stacking weakens interlayer bonding,affecting the mechanical properties of the printed product.4.The accuracy and speed of DIW printing are insufficient for large-scale manufacturing.After introducing the topic,the requirements for DIW printing inks are first reviewed,emphasizing the importance of thixotropic agents.Then,research progress regarding DIW printing of high-performance polymers is comprehensively reviewed according to the requirements of different polymer inks.Additionally,the applications of these materials across various fields are summarized.Finally,the challenges in DIW printing of high-performance polymers,along with corresponding solutions and future development prospects,are discussed in detail.
文摘Conversation B Susie:I know.Pencils are also better for drawing.You can make lines lighter or darker.Sam:But you have to sharpen pencils or add lead to them.Susie:You do.But pencils last longer than pens.Pen ink can dry out,but pencil lead doesn’t.Sam:But words look neater when you write in pen.Susie:They do.So,which pen do you want?Sam:One with blue ink,thanks.
基金the National Key Research and Development Program of China(No.2020YFB1313100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA16020803)+2 种基金the National Natural Science Foundation of China(Nos.51875557 and 52205319)the Research Equipment Development Program of the Chinese Academy of Sciences(No.YJKYYQ20190045)the Foundation of State Key Laboratory of Robotics(Nos.2021-Z01,2022-Z04 and 2023-Z01)。
文摘Flexible electronic technology has laid the foundation for complex human-computer interaction system,and has attracted great attention in the field of human motion detection and soft robotics.Graphene has received an extensive attention due to its excellent electrical conductivity;however,how to use it to fabricate wearable flexible sensors with complex structures remains challenging.In this study,we studied the rheological behavior of graphene/polydimethylsiloxane ink and proposed an optimal graphene ratio,which makes the ink have an good printability and conductivity at the same time.Then,based on the theory of Peano fractal layout,we proposed a two-dimensional structure that can withstand multi-directional tension by replacing the traditional arris structure with the arc structure.After that,we manufactured circular arc fractal structure sensor by adjusting ink composition and printing structure through direct ink writing method.Finally,we evaluated the detection performance and repeatability of the sensor.This method provides a simple and effective solution for fabricating wearable flexible sensors and exhibits the potential to fabricate 3D complex flexible electronic devices.
文摘As sunlight streams through floor-to-ceiling windows and falls gently upon the bookshelves,readers-seated or standing-immerse themselves in the rich literary world created by ink and paper.
基金Funded by the National Natural Science Foundation of China(No.62171331)the Hubei Provincial Natural Science Foundation of China(No.2020CFB188)the Sanya Science and Education Innovation Park of Wuhan University of Technology(No.2020KF0030)。
文摘This study systemmatically investigated the effects of solid content and dispersant content on the physicochemical properties of ZnO-SnO_(2) composite ink.The experimental results show that even with the use of low-molecular-weight PEG400 dispersant,gas-sensitive ink with high solid content and good suspension stability can be obtained,which is advantageous for low-temperature film formation and can effectively prevent property changes and film crack of high-temperature-sintering-induced material.Under this condition,the ink at a 15wt%solid content and 2wt%-10wt%PEG400 has good film-forming ability and high adhesion strength on the micro-electromechanical system(MEMS)micro-hotplates.Especially,the MEMS sensor printed using the ink of 6wt%PEG400 shows highest sensitivity,favorable impact resistance,thermal shock resistance,and up to 8 years of service life.