As in homology, the notion of injectivity is introduced in the category whose objects are Hilbert C * module over a C * algebra and whose morphism are bounded module operators. The definition of injective envelope...As in homology, the notion of injectivity is introduced in the category whose objects are Hilbert C * module over a C * algebra and whose morphism are bounded module operators. The definition of injective envelopes of an extension of a Hilbert C * modules over a C * algebra is introduced, and is characterized in terms of the injectivity and essence. It is shown that every Hilbert C * module has a unique (up to H isometrics) injective envelope if it exists. It is also shown that an extension of a Hilbert C * module is an injective envelope if and only if it is an injective and essential extension. Moreover, every Hilbert C * module over a W * algebra has a unique (up to H isometrics) injective envelope and the injective envelope of a Hilbert C * module H is maximal essential extension of H .展开更多
The notion of absolutely clean N-complexes is studied.We show that an N-complex X is absolutely clean if and only if X is Nexact and Z,(X)is an absolutely clean module for each n e Z and i=1,2,..,N.In particular,we pr...The notion of absolutely clean N-complexes is studied.We show that an N-complex X is absolutely clean if and only if X is Nexact and Z,(X)is an absolutely clean module for each n e Z and i=1,2,..,N.In particular,we prove that a bounded above N-complex X is absolutely clean if and only if X,is an absolutely clean module for each n e Z.We also show that under certain hypotheses,an Ncomplex X is Gorenstein AC-injective if and only if Z;(X)is a Gorenstein AC-injective module for each n e Z and t=1,2,.,N.展开更多
In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applicati...In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applications are given.展开更多
In this paper, we mainly investigate some properties of strongly n-Gorenstein projective, injective and flat modules under the extension of rings, which mainly including excellent extensions, morita equivalences, poly...In this paper, we mainly investigate some properties of strongly n-Gorenstein projective, injective and flat modules under the extension of rings, which mainly including excellent extensions, morita equivalences, polynomial extensions and localizations.展开更多
Let R be a commutative Noetherian ring and p be a prime ideal of R such that the ideal pRp is principal and ht(p)≠0. In this note, the anthors describe the explicit structure of the injective envelope of the R-module...Let R be a commutative Noetherian ring and p be a prime ideal of R such that the ideal pRp is principal and ht(p)≠0. In this note, the anthors describe the explicit structure of the injective envelope of the R-module R/p.展开更多
Let R be a ring. R is called right AP-injective if, for any a E R, there exists a left ideal of R such that lr(a) = Ra+Xa. We extend this notion to modules. A right R-module M with S = End(MR) is called quasi AP-...Let R be a ring. R is called right AP-injective if, for any a E R, there exists a left ideal of R such that lr(a) = Ra+Xa. We extend this notion to modules. A right R-module M with S = End(MR) is called quasi AP-injective if, for any s∈S, there exists a left ideal Xs of S such that ls(Ker(s)) = Ss+Xs. In this paper, we give some characterizations and properties of quasi AP-injective modules which generalize results of Page and Zhou.展开更多
The definition of AP-injectivity wnil-injectivity and almost nil n-injectivity motivates us to generalize the injectivity to almost The aim of this paper is to investigate characterizations and properties of almost w...The definition of AP-injectivity wnil-injectivity and almost nil n-injectivity motivates us to generalize the injectivity to almost The aim of this paper is to investigate characterizations and properties of almost wnil-injective rings and almost nil n-injective rings. Various results are developed, and many conclusions extend known results.展开更多
In this article, we introduce and study the concept of n-Gorenstein injective (resp., n-Gorenstein flat) modules as a nontrivial generalization of Gorenstein injective (resp., Gorenstein flat) modules. We invest...In this article, we introduce and study the concept of n-Gorenstein injective (resp., n-Gorenstein flat) modules as a nontrivial generalization of Gorenstein injective (resp., Gorenstein flat) modules. We investigate the properties of these modules in various ways. For example, we show that the class of n-Gorenstein injective (resp., n -Gorenstein flat) modules is closed under direct sums and direct products for n ≥ 2. To this end, we first introduce and study the notions of n-injective modules and n-flat modules.展开更多
Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-...Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, setφe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing mapφe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed展开更多
A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominatin...A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominating set is denoted by and is called the Inj-equitable domination number of G. In this paper, we introduce the injective equitable domination of a graph and study its relation with other domination parameters. The minimal injective equitable dominating set, the injective equitable independence number , and the injective equitable domatic number are defined.展开更多
A coloring of edges of a graph G is injective if for any two distinct edges e1 and e2,the coloring of e1 and e2 are distinct if they are at distance 2 in G or in a common 3-cycle.The injective chromatic index of G is ...A coloring of edges of a graph G is injective if for any two distinct edges e1 and e2,the coloring of e1 and e2 are distinct if they are at distance 2 in G or in a common 3-cycle.The injective chromatic index of G is the minimum number of colors needed for an injective edge coloring of G.It was conjectured that the injective chromatic index of any subcubic graph is at most 6.In this paper,we partially confirm this conjecture by showing that the injective chromatic index of any claw-free subcubic graph is less than or equal to 6.The bound 6 is tight and our proof implies a linear-time algorithm for finding an injective edge coloring using at most 6 colors for such graphs.展开更多
The definition of principally pseudo injectivity motivates us to generalize tae notion of injectivity, noted SP pseudo injectivity. The aim of this paper is to investigate characterizations and properties of SP pseudo...The definition of principally pseudo injectivity motivates us to generalize tae notion of injectivity, noted SP pseudo injectivity. The aim of this paper is to investigate characterizations and properties of SP pseudo injective modules. Various results are devel- oped, many extending known results. As applications, we give some characterizations on Noetherian rings, QI rings, quasi-Frobenius rings.展开更多
文摘As in homology, the notion of injectivity is introduced in the category whose objects are Hilbert C * module over a C * algebra and whose morphism are bounded module operators. The definition of injective envelopes of an extension of a Hilbert C * modules over a C * algebra is introduced, and is characterized in terms of the injectivity and essence. It is shown that every Hilbert C * module has a unique (up to H isometrics) injective envelope if it exists. It is also shown that an extension of a Hilbert C * module is an injective envelope if and only if it is an injective and essential extension. Moreover, every Hilbert C * module over a W * algebra has a unique (up to H isometrics) injective envelope and the injective envelope of a Hilbert C * module H is maximal essential extension of H .
基金Supported by the National Natural Science Foundation of China (12061061)Fundamental Research Funds for the Central Universities (31920230173)+1 种基金Longyuan Young Talents of Gansu ProvinceYoung Talents Team Project of Gansu Province (2025QNTD49)。
文摘The notion of absolutely clean N-complexes is studied.We show that an N-complex X is absolutely clean if and only if X is Nexact and Z,(X)is an absolutely clean module for each n e Z and i=1,2,..,N.In particular,we prove that a bounded above N-complex X is absolutely clean if and only if X,is an absolutely clean module for each n e Z.We also show that under certain hypotheses,an Ncomplex X is Gorenstein AC-injective if and only if Z;(X)is a Gorenstein AC-injective module for each n e Z and t=1,2,.,N.
基金Supported by the National Natural Science Foundation of China(11361051) Supported by the Program for New Century Excellent the Talents in University(NCET-13-0957)
文摘In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applications are given.
基金Supported by the NNSF of China(10901129)Supported by the SRFDP(20096203120001)
文摘In this paper, we mainly investigate some properties of strongly n-Gorenstein projective, injective and flat modules under the extension of rings, which mainly including excellent extensions, morita equivalences, polynomial extensions and localizations.
基金This research is in part supported by a grant from IPM.
文摘Let R be a commutative Noetherian ring and p be a prime ideal of R such that the ideal pRp is principal and ht(p)≠0. In this note, the anthors describe the explicit structure of the injective envelope of the R-module R/p.
文摘Let R be a ring. R is called right AP-injective if, for any a E R, there exists a left ideal of R such that lr(a) = Ra+Xa. We extend this notion to modules. A right R-module M with S = End(MR) is called quasi AP-injective if, for any s∈S, there exists a left ideal Xs of S such that ls(Ker(s)) = Ss+Xs. In this paper, we give some characterizations and properties of quasi AP-injective modules which generalize results of Page and Zhou.
基金Supported by the Doctoral Fund of the Ministry of Education of China(Grant No.200803570003)the College Excellent Young Talents Fund of Anhui Province(Grant No.2013SQRL071ZD)
文摘The definition of AP-injectivity wnil-injectivity and almost nil n-injectivity motivates us to generalize the injectivity to almost The aim of this paper is to investigate characterizations and properties of almost wnil-injective rings and almost nil n-injective rings. Various results are developed, and many conclusions extend known results.
基金The NSF(11501451)of Chinathe Fundamental Research Funds(31920150038)for the Central Universities and XBMUYJRC(201406)
文摘In this article, we introduce and study the concept of n-Gorenstein injective (resp., n-Gorenstein flat) modules as a nontrivial generalization of Gorenstein injective (resp., Gorenstein flat) modules. We investigate the properties of these modules in various ways. For example, we show that the class of n-Gorenstein injective (resp., n -Gorenstein flat) modules is closed under direct sums and direct products for n ≥ 2. To this end, we first introduce and study the notions of n-injective modules and n-flat modules.
基金Supported by the National Natural Science Foundation of China(60673081)863 Program(2006AA01Z417)
文摘Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, setφe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing mapφe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed
文摘A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominating set is denoted by and is called the Inj-equitable domination number of G. In this paper, we introduce the injective equitable domination of a graph and study its relation with other domination parameters. The minimal injective equitable dominating set, the injective equitable independence number , and the injective equitable domatic number are defined.
基金Supported by the National Natural Science Foundation of China(Grant No.11771080).
文摘A coloring of edges of a graph G is injective if for any two distinct edges e1 and e2,the coloring of e1 and e2 are distinct if they are at distance 2 in G or in a common 3-cycle.The injective chromatic index of G is the minimum number of colors needed for an injective edge coloring of G.It was conjectured that the injective chromatic index of any subcubic graph is at most 6.In this paper,we partially confirm this conjecture by showing that the injective chromatic index of any claw-free subcubic graph is less than or equal to 6.The bound 6 is tight and our proof implies a linear-time algorithm for finding an injective edge coloring using at most 6 colors for such graphs.
基金Supported by the Ph.D.Programs Foundation of Ministry of Education of China(200803570003)
文摘The definition of principally pseudo injectivity motivates us to generalize tae notion of injectivity, noted SP pseudo injectivity. The aim of this paper is to investigate characterizations and properties of SP pseudo injective modules. Various results are devel- oped, many extending known results. As applications, we give some characterizations on Noetherian rings, QI rings, quasi-Frobenius rings.