期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Performance of rotating detonation engine with stratified injection 被引量:1
1
作者 Zhi-di LEI Xiao-quan YANG +2 位作者 Jue DING Pei-fen WENG Xun-nian WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第9期734-744,共11页
In this study,a numerical study based on Euler equations and coupled with detail chemistry model is used to improve the propulsion performance and stability of the rotating detonation engine.The proposed fuel injectio... In this study,a numerical study based on Euler equations and coupled with detail chemistry model is used to improve the propulsion performance and stability of the rotating detonation engine.The proposed fuel injection called stratified injection functions by suppressing the isobaric combustion process occurring on the contact surface between fuel and detonation products,and thus the proportion of fuel consumed by detonation wave increases from 67%to 95%,leading to more self-pressure gain and lower entropy generation.A pre-mixed hydrogen-oxygen-nitrogen mixture is used as a reactive mixture.The computational results show that the propulsion performance and the operation stability of the engine with stratified injection are both improved,the temperature of the flow field is notably decreased,the specific impulse of the engine is improved by 16.3%,and the average temperature of the engine with stratified injection is reduced by 19.1%. 展开更多
关键词 Rotating detonation engine injection pattern Propulsion performance INSTABILITY
原文传递
Deployment and Exploration of a Gas Storage Well Pattern Based on the Threshold Radius 被引量:2
2
作者 TANG Ligen ZHU Weiyao +11 位作者 ZHU Huayin SUN Chunhui YANG Fenglai WANG Yan Li Xiaorui Li Haiming CHU Guangzhen WANG Jieming KONG Debin YUE Ming LIU Yuwei HUANG Kun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第2期630-637,共8页
To tackle the problem that wells that are deployed in a specific pattern based on the requirements of gas reservoir development are not suitable for gas storage,we have conducted concentrically circular injection and ... To tackle the problem that wells that are deployed in a specific pattern based on the requirements of gas reservoir development are not suitable for gas storage,we have conducted concentrically circular injection and production simulation experiments for gas storage,discovered the existence of a threshold radius,denoted by Rt,and derived the expression for Rt.Based on the analysis and discussion results,we propose a strategy for deploying gas storage wells in specific patterns.The expression for Rt shows that it is affected by factors such as the gas storage gas production/injection time,the upper pressure limit,the lower pressure limit,the bottomhole flow pressure at the ends of injection and production,the and permeability.The analysis and discussion results show that the Rt of a gas storage facility is much smaller than the Rt for gas reservoir development.In the gas storage facilities in China,the Rt for gas production is less than the Rt for the gas injection,and Rt increases with the difference in the operating pressure and with permeability K.Based on the characteristics of Rt,we propose three suggestions for gas storage well pattern deployment:(1)calculate Rt according to the designed functions of the gas storage facility and deploy the well pattern according to Rt;(2)deploy sparser,large-wellbore patterns in high-permeability areas and denser,small-wellbore patterns in high-permeability areas;and(3)achieve the gas injection well pattern by new drilling,and the gas production well pattern through a combination of the gas injection well pattern and old wells.By assessing a gas storage facility with a perfect well pattern after a number of adjustments,we found that the Rt of the 12 wells calculated in this paper is basically close to the corresponding actual radius,which validates our method.The results of this study provide a methodological basis for well pattern deployment in new gas storage construction. 展开更多
关键词 gas storage well deployment strategy gas injection well pattern gas production well pattern threshold radius
在线阅读 下载PDF
A simulation study of water injection and gas injectivity scenarios in a fractured carbonate reservoir:A comparative study 被引量:5
3
作者 Afshin Davarpanah Behnam Mirshekari A.Armin Razmjoo 《Petroleum Research》 2019年第3期250-256,共7页
Regarding the enormous demands of numerous industries to fossil fuels,it is essential to select the proper enhanced oil recovery approaches for vertical and horizontal wells to supply the demands with the optimum expe... Regarding the enormous demands of numerous industries to fossil fuels,it is essential to select the proper enhanced oil recovery approaches for vertical and horizontal wells to supply the demands with the optimum expenditure.Water and gas injectivity as the secondary enhanced oil recovery techniques would be preferentially considered regarding their low costs of performances rather than chemical recovery and thermal techniques.Injected gas tends to push oil through pores or cracks in the matrix block and lead them to the production well.Therefore,injection of gas may significantly increase the recovery factor in these reservoirs.In this research,different injection scenarios in a fractured carbonate reservoir in the west of Iran are being simulated by the PVT modules of Eclipse software.The purpose of this research is to analyze the possibility of gradually increasing the extent of recovery by injecting carbon dioxide,methane,and water,and different injectivity patterns are considered in this research.The selection of injectivity patterns is severely based on the highest recycling rate of gas injection on different injection scenarios,and the injectivity scenarios were being compared with the natural depletion scenario.Consequently,Co2 injection(about 60%)had the highest oil recovery factor and CH4 and TB(about 54%and 53%)injectivity scenarios had the second and third highest rate of the oil recovery factor. 展开更多
关键词 Fractured carbonated reservoir Gas injection scenarios Co2 injection Oil recovery factor Injectivity patterns
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部