we study an initial-boundary-value problem for the "good" Boussinesq equation on the half line{δt^2u-δx^2u+δx^4u+δx^2u^2=0,t〉0,x〉0. u(0,t)=h1(t),δx^2u(0,t) =δth2(t), u(x,0)=f(x),δtu(x,0)=δx...we study an initial-boundary-value problem for the "good" Boussinesq equation on the half line{δt^2u-δx^2u+δx^4u+δx^2u^2=0,t〉0,x〉0. u(0,t)=h1(t),δx^2u(0,t) =δth2(t), u(x,0)=f(x),δtu(x,0)=δxh(x).The existence and uniqueness of low reguality solution to the initial-boundary-value problem is proved when the initial-boundary data (f, h, h1, h2) belong to the product spaceH^5(R^+)×H^s-1(R^+)×H^s/2+1/4(R^+)×H^s/2+1/4(R^+) 1 The analyticity of the solution mapping between the initial-boundary-data and the with 0 ≤ s 〈 1/2. solution space is also considered.展开更多
We show existence of time-periodic supersonic solutions in a finite interval, after certain start-up time depending on the length of the interval, to the one space-dimensional isentropic compressible Euler equations, ...We show existence of time-periodic supersonic solutions in a finite interval, after certain start-up time depending on the length of the interval, to the one space-dimensional isentropic compressible Euler equations, subjected to periodic boundary conditions. Both classical solutions and weak entropy solutions, as well as high-frequency limiting behavior are considered. The proofs depend on the theory of Cauchy problems of genuinely nonlinear hyperbolic systems of conservation laws.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dyn...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dynamics of Reissner sandwich plate can be established systematically. The unconventional Hamilton-type variation principle can fully characterize the initial boundary value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work in dynamics of Reissner sandwich plate, but also to derive systematically the complementary functionals for fivefield, two-field and one-field unconventional Hamilton-type variational principles by the generalized Legender transformations. Furthermore, with this approach, the intrinsic relationship among the various principles can be explained clearly.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electroma...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.展开更多
In this paper, we discuss convergence of difference methods for initial-boundary-value problems of quasilinear hyperbolic systems with moving boundaries in two independent variables, where the differences across the b...In this paper, we discuss convergence of difference methods for initial-boundary-value problems of quasilinear hyperbolic systems with moving boundaries in two independent variables, where the differences across the boundaries do not appear and the boundary conditions are nonlinear. Such a class of problems come from the "singularity-separating difference method" for initial-boundary-value problems of quasilinear hyperbolic systems.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10931007)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y6090158)
文摘we study an initial-boundary-value problem for the "good" Boussinesq equation on the half line{δt^2u-δx^2u+δx^4u+δx^2u^2=0,t〉0,x〉0. u(0,t)=h1(t),δx^2u(0,t) =δth2(t), u(x,0)=f(x),δtu(x,0)=δxh(x).The existence and uniqueness of low reguality solution to the initial-boundary-value problem is proved when the initial-boundary data (f, h, h1, h2) belong to the product spaceH^5(R^+)×H^s-1(R^+)×H^s/2+1/4(R^+)×H^s/2+1/4(R^+) 1 The analyticity of the solution mapping between the initial-boundary-data and the with 0 ≤ s 〈 1/2. solution space is also considered.
基金supported by the National Natural Science Foundation of China(11371141 and 11871218)Science and Technology Commission of Shanghai Municipality(STCSM)under Grant No.18dz2271000
文摘We show existence of time-periodic supersonic solutions in a finite interval, after certain start-up time depending on the length of the interval, to the one space-dimensional isentropic compressible Euler equations, subjected to periodic boundary conditions. Both classical solutions and weak entropy solutions, as well as high-frequency limiting behavior are considered. The proofs depend on the theory of Cauchy problems of genuinely nonlinear hyperbolic systems of conservation laws.
基金Project supported by the National Natural Science Foundation of China(No.10172097)the Doctoral Foundation of Ministry of Education of China(No.20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dynamics of Reissner sandwich plate can be established systematically. The unconventional Hamilton-type variation principle can fully characterize the initial boundary value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work in dynamics of Reissner sandwich plate, but also to derive systematically the complementary functionals for fivefield, two-field and one-field unconventional Hamilton-type variational principles by the generalized Legender transformations. Furthermore, with this approach, the intrinsic relationship among the various principles can be explained clearly.
基金the National Natural Science Foundation of China ( Grant No. 10172097) the Scientific Foundation of the Ministry of Education of China for Doctoral Program ( Grant No. 20030558025).
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
基金Project supported in part by the National Natural Science Foundation of China
文摘In this paper, we discuss convergence of difference methods for initial-boundary-value problems of quasilinear hyperbolic systems with moving boundaries in two independent variables, where the differences across the boundaries do not appear and the boundary conditions are nonlinear. Such a class of problems come from the "singularity-separating difference method" for initial-boundary-value problems of quasilinear hyperbolic systems.