期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
发展战略的博弈论解析 被引量:1
1
作者 彭智勇 《特区经济》 北大核心 2007年第3期288-290,共3页
在商业活动中,我们经常受到传统思维模式的限制,难以在博弈中获得理想的收益,只有改变思维方式,利用博弈论的基本思想,通过改变博弈中的一个或几个要素来改变博弈,我们就能改变自己在博弈中的地位,并进而获得理想的博弈收益。
关键词 思维模式 改变博弈 利益创造 利益分配 主动权
原文传递
复杂坝基的拉——剪强度法有限元分析
2
作者 苏志敏 江春雷 《云南工业大学学报》 1999年第3期20-24,共5页
针对复杂坝基岩体的结构特点和受荷响应特点,采用拉- 剪强度法,将各种新的岩石强度准则镶入有限元(FEA) 软件包中,用于计算分析复杂坝基的破坏过程,并举例.同时,本文还介绍了有限元软件的可视化结构.
关键词 复杂坝基 FEA 拉-剪强度法 有限元 坝基
在线阅读 下载PDF
Unconventional Hamilton-type variational principles for nonlinear coupled thermoelastodynamics 被引量:9
3
作者 罗恩 黄伟江 +1 位作者 邝君尚 罗志国 《Science China Mathematics》 SCIE 2002年第6期783-794,共12页
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometric... According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear coupled thermoelastodynamics can be established systematically. The new unconventional Hamilton-type variational principle can fully characterize the initial-boundaty-value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for geometrically nonlinear coupled thermodynamics. Based on this relation, it is possible not only to obtain the principle of virtual work in geometrically nonlinear coupled thermodynamics, but also to derive systematically the complementary functionals for eight-field, six-field, four-field and two-field unconventional Hamilton-type variational principles by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly. 展开更多
关键词 UNCONVENTIONAL Hamilton-type VARIATIONAL principle geometric nonlinearity COUPLED thermoelasto dynamics dual-complementary relation initial- boundary-value problem.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部