期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Spatio-temporal evolution of pore and fracture structures in coal induced by initial damage and creep behavior:A real-time NMR-based approach
1
作者 Lei Zhang Yimeng Wang +5 位作者 Mingzhong Gao Wenhao Jia Senlin Xie Wei Hou Xiangyu Wang Hao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1409-1425,共17页
Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coa... Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out. 展开更多
关键词 COAL Microscopic pore and fracture structures initial damage Creep behavior Fractional porosity model of seepage pores and microfractures Nuclear magnetic resonance
在线阅读 下载PDF
Relationship between the Classification of Rock Surrounding Underground Chambers and the Initial Damage Variations in Rock Masses
2
作者 Mingjie Zhao 《International English Education Research》 2014年第10期109-113,共5页
On the basis of the relationship between each classification index for underground chambers and the elastic wave velocity of rock mass, a corresponding relationship between the classification of rock surrounding under... On the basis of the relationship between each classification index for underground chambers and the elastic wave velocity of rock mass, a corresponding relationship between the classification of rock surrounding underground chambers and the initial damage variable is established by using the wave velocity definition of the initial damage variable of rock masses. Calculation and analysis of relevant data from a hydropower dam located in Southwest China show that the initial damage variable obtained by means of surrounding rock classification has a close relationship with that calculated by wave velocity, which verifies the rationality of the relationship of the two classification indices. This study establishes a foundation for further damage mechanics and stability analysis on the basis of surrounding rock classification. 展开更多
关键词 underground chamber rock mass classification the initial damage variation elastic wave velocity
在线阅读 下载PDF
Optimized joint repair effects on damage evolution and arching mechanism of CRTS II slab track under extreme thermal conditions
3
作者 CAI Xiao-pei CHEN Ze-lin +3 位作者 CHEN Bo-jing ZHONG Yang-long ZHOU Rui HUANG Yi-chen 《Journal of Central South University》 2025年第6期2273-2287,共15页
To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track ... To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track was derived based on the principle of stationary potential energy.Considering interlayer evolution and structural crack propagation,an optimized joint repair model for the track was established and validated.Subsequently,the impact of joint repair on track damage and arch stability under extreme temperatures was studied,and a comprehensive evaluation of the feasibility of joint repair and the evolution of damage after repair was conducted.The results show that after the joint repair,the temperature rise of the initial damage of the track structure can be increased by 11℃.Under the most unfavorable heating load with a superimposed temperature gradient,the maximum stiffness degradation index SDEG in the track structure is reduced by about 81.16%following joint repair.The joint repair process could effectively reduce the deformation of the slab arching under high temperatures,resulting in a reduction of 93.96%in upward arching deformation.After repair,with the damage to interfacing shear strength,the track arch increases by 2.616 mm. 展开更多
关键词 CRTS II slab track optimized joint repair arching mechanism temperature load damage initiation and evolution
在线阅读 下载PDF
An interlaminar damage shell model for typical composite structures
4
作者 Jie ZHOU Zhen WU +1 位作者 Zhengliang LIU Xiaohui REN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期118-137,共20页
Using the plate/shell elements in commercial software,accurate analysis of interlaminar initial damage in typical composite structures is still a challenging issue.To propose an accurate and efficient model for analys... Using the plate/shell elements in commercial software,accurate analysis of interlaminar initial damage in typical composite structures is still a challenging issue.To propose an accurate and efficient model for analysis of interlaminar initial damage,the following work is carried out:(A)A higher-order theory is firstly proposed by introducing the local Legendre polynomials,and then a novel shell element containing initial damage prediction is developed,which can directly predict transverse shear stresses without any postprocessing methods.Unknown variables at each node are independent of number of layers,so the proposed model is more efficient than the 3D-FEM.(B)Compression experiment is carried out to verify the capability of the proposed model.The results obtained from the proposed model are in good agreement with experimental data.(C)Several examples have been analyzed to further assess the capability of the proposed model by comparing to the 3D-FEM results.Moreover,accuracy and efficiency have been evaluated in different damage criterion by comparing with the selected models.The numerical results show that the proposed model can well predict the initial interlaminar damage as well as other damage.Finally,the model is implemented with UEL subroutine,so that the present approach can be readily utilized to analyze the initial damage in typical composite structures. 展开更多
关键词 Compression experiment Finite element method initial damage Interlaminar stress Plate/shell element
原文传递
A method for determining the kinetic energy evolution of rockburst:A true triaxial rockburst experimental study on granite samples considering initial thermal damage
5
作者 Dejian LI Chunxiao LI Manchao HE 《Science China(Technological Sciences)》 2025年第4期249-263,共15页
The kinetic energy of the ejected fragments is an effective index for quantitatively evaluating the failure severity of rockburst.To improve the measurement accuracy of the kinetic energy,the total kinetic energy was ... The kinetic energy of the ejected fragments is an effective index for quantitatively evaluating the failure severity of rockburst.To improve the measurement accuracy of the kinetic energy,the total kinetic energy was divided into translational and rotational kinetic energy in this paper.An analysis method for translational and rotational kinetic energy was subsequently proposed by introducing a four-eye high-speed photography system.Moreover,the true triaxial rockburst experiments on granite samples after heat treatment at various temperatures were carried out to reveal the evolution characteristics of the kinetic energy of rockburst.The experimental results reveal that with increasing the particle size of the rockburst fragment,the correction coefficient of measurement error of the translational kinetic energy increases first but then decreases.A power function law is obtained between the ratio of the rotational kinetic energy to the translational kinetic energy and the particle size of the rockburst fragment.Compared to the uncorrected kinetic energy measured by the system,the total kinetic energy presents a decreasing trend.The maximum proportion of total kinetic energy to uncorrected kinetic energy is 0.9.The peak stress,failure intensity and total kinetic energy all initially increase but subsequently decrease as the heat treatment temperature increases.The research outcome is favourable to revealing the impact of initial thermal damage on the rockburst mechanism. 展开更多
关键词 ROCKBURST GRANITE translational and rotational kinetic energy evolution characteristics of kinetic energy initial thermal damage
原文传递
Predicting excavation damage zone depths in brittle rocks 被引量:18
6
作者 Matthew A.Perras Mark S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第1期60-74,共15页
During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the... During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the depth of damage is a critical aspect for the design of permeability sensitive excavations, such as a deep geological repository(DGR) for nuclear waste. Review of literature regarding the depth of excavation damage zones(EDZs) indicates three zones are common and typically related to stress induced damage. Based on past developments related to brittle damage prediction using continuum modelling, the depth of the EDZs has been examined numerically. One method to capture stress induced damage in conventional engineering software is the damage initiation and spalling limit(DISL) approach. The variability of depths predicted using the DISL approach has been evaluated and guidelines are suggested for determining the depth of the EDZs around circular excavations in brittle rock masses. Of the inputs evaluated, it was found that the tensile strength produces the greatest variation in the depth of the EDZs. The results were evaluated statistically to determine the best fit relation between the model inputs and the depth of the EDZs. The best correlation and least variation were found for the outer EDZ and the highly damaged zone(HDZ) showed the greatest variation. Predictive equations for different EDZs have been suggested and the maximum numerical EDZ depths, represented by the 68% prediction interval, agreed well with the empirical evidence. This suggests that the numerical limits can be used for preliminary depth prediction of the EDZs in brittle rock for circular excavations. 展开更多
关键词 Excavation damage zones(EDZs) Deep geological repository(DGR) Empirical depth prediction Numerical depth prediction damage depth sensitivity damage initiation and spalling limit(DISL)
在线阅读 下载PDF
FAILURE ASSESSMENT OF DEFECTIVE GATHERING TUBE UNDER HIGH PRESSURE
7
作者 Zhang Wenge Li Jianrong Yu JilinKey Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, CAS, Hefei 230027, ChinaChen Xuedong Zhang Haibo Wang Bing Hefei General Machinery Research Institute 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第2期189-192,共4页
A numerical model on stress assessment of a defective elliptic gathering tubeused in the heat recovery boiler of a pyrolyzer is built up. The effect of local defects on thecarrying capacity of the tube is analyzed by ... A numerical model on stress assessment of a defective elliptic gathering tubeused in the heat recovery boiler of a pyrolyzer is built up. The effect of local defects on thecarrying capacity of the tube is analyzed by using the MSC/NASTRAN finite element code, and thecritical size of defects is obtained. Then, two numerical models of damaged tube with local andintegral reinforcements, respectively, are also calculated. Stress classification and assessmentsare provided by applying the ASME and JB4732-1995 standard. Some guidance and suggestions about thetube reinforcements and the prediction of the remaining life of the structure for engineeringpractice are discussed. 展开更多
关键词 Gathering tube Heat recovery boiler initial damage Failure assessment Numerical simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部