Over the past few years,major investments have been directed toward building new railway lines and upgrading existing ones.Many of these lines include critical infrastructure where operational and safety conditions mu...Over the past few years,major investments have been directed toward building new railway lines and upgrading existing ones.Many of these lines include critical infrastructure where operational and safety conditions must be carefully considered throughout their life cycle.Recent advancements in science and technology have enabled more effective structural monitoring of railway systems,largely driven by the adoption of intelligent strategies for inspection,maintenance,monitoring,and risk management.Research continues to expand and deepen the knowledge in this area;however,it remains a challenging field due to factors such as the complexity of railway systems,the high cost of implementation,and the need for reliable long-term data.展开更多
The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular int...The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular intervals to identify damaged road segments and road hazards. Methods have been developed to comprehensively and automatically digitize the road infrastructure and estimate the road quality, which are based on vehicle sensors and a supervised machine learning classification. Since different types of vehicles have various suspension systems with different response functions, one classifier cannot be taken over to other vehicles. Usually, a high amount of time is needed to acquire training data for each individual vehicle and classifier. To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth.展开更多
Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantag...Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantages. The technique based on satellite positioning systems (GPS, GLONASS and the future GALILEO) seems to be very promising at least for long period structures. The GPS in particular provides sampling rates that are able to track dynamic displacements with high accuracy. Its service ability is independent of atmospheric conditions, temperature variations and visibility of the monitored object. This paper investigates the reliability and accuracy of the measurements of dual frequency GPS receivers. A linear electromagnetic motor moves an object along a given direction. The changes of position are compared witb their estimates as recorded by a GPS receiver, whose antenna is located on the reference object. The comparison is based on sufficiently long records.展开更多
The “Monitoring City Walls” research project by the University of Pisa approaches planned conservation as a process that pursues an in-depth understanding of historic city walls and their surroundings to define a sy...The “Monitoring City Walls” research project by the University of Pisa approaches planned conservation as a process that pursues an in-depth understanding of historic city walls and their surroundings to define a system of effective risk prevention. This multidisciplinary research adopts monitoring strategies and technologies at the large scale and in relationship to natural and urban conditions. The underlying logic frames the conservation of these historic fortifications within the more general mitigation of risks generated by context. The research aims to develop an innovative approach to monitoring ancient defensive structures in historical towns. The integrated use of advanced technologies allows for the control and, most importantly, advance identification of possible risks. These new technologies, in particular satellite interferometry, make it possible to improve and increase the operational capacity of monitoring processes by facilitating the acquisition and investigation of data relative to the system defined by ancient city walls and their surroundings. These technologies also represent a cost-effective tool for managing the important transition from the observation and study of individual monuments to the monitoring of large monumental complexes or even entire historical centers.展开更多
The strain of bridges under traffic loads is time-varying and of small amplitude(~10^(-6)),which is a type of cumulative response and needs long-term continuous monitoring.To precisely capture the time-varying respons...The strain of bridges under traffic loads is time-varying and of small amplitude(~10^(-6)),which is a type of cumulative response and needs long-term continuous monitoring.To precisely capture the time-varying responses,a dynamic strain triboelectric nanogenerator(TENG)sensor with superior response capability,sensitivity,self-powered,and long-term stability is proposed in this paper.An analytical correlation between the structural strain response signal and the detected electrical signal is established for long-term continuous quantitative strain measurements based on the principles of contact electrification and electrostatic induction.A series of experiments are conducted to investigate the output performance of the proposed lateral-sliding mode TENG sensors.The results reveal that,with the loading condition with frequencies lower than 10 Hz,the time-varying strain responses of the steel bridge within the range of 3 to 150 microstrains can also be detected with high precision of 0.1 microstrains.And it achieves long-term stability after 10000 loading cycles compared with commercial sensors.The proposed novel sensing theory and method based on TENG technology can be applied as a new alternative approach for monitoring realtime structural strain information quantitatively with general applicability and feasibility for bridges.展开更多
Currently, the IT-support for energy performance rating of buildings is insufficient. So-called IT-platforms often 'built' of an ad-hoc, inconsistent combination of off-the-shelf building management compo-nent...Currently, the IT-support for energy performance rating of buildings is insufficient. So-called IT-platforms often 'built' of an ad-hoc, inconsistent combination of off-the-shelf building management compo-nents, distributed data metering equipment and several monitoring software tools. A promising approach to achieve consistent, holistic performance data management is the implementation of an integrated, modular wireless sensor platform. This paper presents an approach of how wireless sensors can be seamlessly integrated into existing and future intelligent building management systems supporting improved building performance and diagnostics with an emphasis on energy management.展开更多
文摘Over the past few years,major investments have been directed toward building new railway lines and upgrading existing ones.Many of these lines include critical infrastructure where operational and safety conditions must be carefully considered throughout their life cycle.Recent advancements in science and technology have enabled more effective structural monitoring of railway systems,largely driven by the adoption of intelligent strategies for inspection,maintenance,monitoring,and risk management.Research continues to expand and deepen the knowledge in this area;however,it remains a challenging field due to factors such as the complexity of railway systems,the high cost of implementation,and the need for reliable long-term data.
基金project of Technical Aspects of Monitoring the Acoustic Quality of Infrastructure in Road Transport(3714541000)commissioned by the German Federal Environment Agencyfunded by the Federal Ministry for the Environment,Nature Conservation,Building and Nuclear Safety,Germany,within the Environmental Research Plan 2014.
文摘The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular intervals to identify damaged road segments and road hazards. Methods have been developed to comprehensively and automatically digitize the road infrastructure and estimate the road quality, which are based on vehicle sensors and a supervised machine learning classification. Since different types of vehicles have various suspension systems with different response functions, one classifier cannot be taken over to other vehicles. Usually, a high amount of time is needed to acquire training data for each individual vehicle and classifier. To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth.
文摘Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantages. The technique based on satellite positioning systems (GPS, GLONASS and the future GALILEO) seems to be very promising at least for long period structures. The GPS in particular provides sampling rates that are able to track dynamic displacements with high accuracy. Its service ability is independent of atmospheric conditions, temperature variations and visibility of the monitored object. This paper investigates the reliability and accuracy of the measurements of dual frequency GPS receivers. A linear electromagnetic motor moves an object along a given direction. The changes of position are compared witb their estimates as recorded by a GPS receiver, whose antenna is located on the reference object. The comparison is based on sufficiently long records.
基金Thanks to Jacinto E.Canivell Garcia De Paredes,Emilio Jose Mascort Albea and Rocio Romero Hernandez at the University of Seville for the support provided in defining the digital mapping instruments.
文摘The “Monitoring City Walls” research project by the University of Pisa approaches planned conservation as a process that pursues an in-depth understanding of historic city walls and their surroundings to define a system of effective risk prevention. This multidisciplinary research adopts monitoring strategies and technologies at the large scale and in relationship to natural and urban conditions. The underlying logic frames the conservation of these historic fortifications within the more general mitigation of risks generated by context. The research aims to develop an innovative approach to monitoring ancient defensive structures in historical towns. The integrated use of advanced technologies allows for the control and, most importantly, advance identification of possible risks. These new technologies, in particular satellite interferometry, make it possible to improve and increase the operational capacity of monitoring processes by facilitating the acquisition and investigation of data relative to the system defined by ancient city walls and their surroundings. These technologies also represent a cost-effective tool for managing the important transition from the observation and study of individual monuments to the monitoring of large monumental complexes or even entire historical centers.
基金supported by the National Key R&D Program of China(Grant No.2018YFB1600200)the National Natural Science Foundation of China(Grant Nos.52122801,11925206,and 51978609)+1 种基金Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR20E080003)。
文摘The strain of bridges under traffic loads is time-varying and of small amplitude(~10^(-6)),which is a type of cumulative response and needs long-term continuous monitoring.To precisely capture the time-varying responses,a dynamic strain triboelectric nanogenerator(TENG)sensor with superior response capability,sensitivity,self-powered,and long-term stability is proposed in this paper.An analytical correlation between the structural strain response signal and the detected electrical signal is established for long-term continuous quantitative strain measurements based on the principles of contact electrification and electrostatic induction.A series of experiments are conducted to investigate the output performance of the proposed lateral-sliding mode TENG sensors.The results reveal that,with the loading condition with frequencies lower than 10 Hz,the time-varying strain responses of the steel bridge within the range of 3 to 150 microstrains can also be detected with high precision of 0.1 microstrains.And it achieves long-term stability after 10000 loading cycles compared with commercial sensors.The proposed novel sensing theory and method based on TENG technology can be applied as a new alternative approach for monitoring realtime structural strain information quantitatively with general applicability and feasibility for bridges.
基金Enterprise Ireland (http://www.buildwise.ie). Research is supported by the BuildWise Industry Advisory Group
文摘Currently, the IT-support for energy performance rating of buildings is insufficient. So-called IT-platforms often 'built' of an ad-hoc, inconsistent combination of off-the-shelf building management compo-nents, distributed data metering equipment and several monitoring software tools. A promising approach to achieve consistent, holistic performance data management is the implementation of an integrated, modular wireless sensor platform. This paper presents an approach of how wireless sensors can be seamlessly integrated into existing and future intelligent building management systems supporting improved building performance and diagnostics with an emphasis on energy management.