Purpose-Infrared simulation plays an important role in small and affordable unmanned aerial vehicles.Its key and main goal is to get the infrared image of a specific target.Infrared physical model is established throu...Purpose-Infrared simulation plays an important role in small and affordable unmanned aerial vehicles.Its key and main goal is to get the infrared image of a specific target.Infrared physical model is established through a theoretical research,thus the temperature field is available.Then infrared image of a specific target can be simulated properly while taking atmosphere state and effect of infrared imaging system into account.For recent years,some research has been done in this field.Among them,the infrared simulation for large scale is still a key problem to be solved.In this passage,a method of classification based on texture blending is proposed and this method effectively solves the problem of classification of large number of images and increase the frame rate of large infrared scene rendering.The paper aims to discuss these issues.Design/methodology/approach-Mosart Atmospheric Tool(MAT)is used first to calculate data of sun radiance,skyshine radiance,path radiance,temperatures of different material which is an offline process.Then,shader in OGRE does final calculation to get simulation result and keeps a high frame rate.Considering this,the authors convert data in MAT file into textures which can be easily handled by shader.In shader responding,radiance can be indexed by information of material,vertex normal,eye and sun.Adding the effect of infrared imaging system,the final radiance distribution is obtained.At last,the authors get infrared scene by converting radiance to grayscale.Findings-In the fragment shader,fake infrared textures are used to look up temperature which can calculate radiance of itself and related radiance.Research limitations/implications-The radiance is transferred into grayscale image while considering effect of infrared imaging system.Originality/value-Simulation results show that a high frame rate can be reached while guaranteeing the fidelity.展开更多
Dynamic infrared scene simulation is for discovering and solving the problems encountered in designing, developing and manufacturing infrared imaging guidance weapons. The infrared scene simulation is explored by usin...Dynamic infrared scene simulation is for discovering and solving the problems encountered in designing, developing and manufacturing infrared imaging guidance weapons. The infrared scene simulation is explored by using the digital grayscale modulation method. The infrared image modulation model of a digital micro-mirror device (DMD) is established and then the infrared scene simulator prototype which is based on DMD grayscale modulation is developed. To evaluate its main parameters such as resolution, contrast, minimum temperature difference, gray scale, various DMD subsystems such as signal decoding, image normalization, synchronization drive, pulse width modulation (PWM) and DMD chips are designed. The infrared scene simulator is tested on a certain infrared missile seeker. The test results show preliminarily that the infrared scene simulator has high gray scale, small geometrical distortion and highly resolvable imaging resolution and contrast and yields high-fidelity images, thus being able to meet the requirements for the infrared scene simulation inside a laboratory.展开更多
The infrared radiation characteristics of aircraft are a key focus in attack-defense confrontation and early warning detection.A rapid simulation method for calculating the infrared characteristics of targets is propo...The infrared radiation characteristics of aircraft are a key focus in attack-defense confrontation and early warning detection.A rapid simulation method for calculating the infrared characteristics of targets is proposed by combining the discrete transfer method.By constructing the aerodynamic shape of a Su-27-like aircraft,the flow field parameters and skin temperature under cruise conditions were calculated.The proposed method was used to generate infrared images and calculate infrared radiation intensity at various detection angles,and perform speed tests.The results indicate that this method has high accuracy;the generated infrared image is clear,accurate,and can be used to identify the characteristic attributes of the target.In the pitch detection plane,the total infrared radiation intensity of the aircraft exhibits a“8”distribution,with the fuselage contributing the most(approximately 50%).In the yaw plane,the vertical stabilizer’s infrared radiation intensity shows a lobed distribution,with peaks at 60°and 120°.The method can achieve a calculation speed of four times per second for a single detection angle,meeting real-time processing requirements and providing valuable data for infrared target recognition algorithms.展开更多
文摘Purpose-Infrared simulation plays an important role in small and affordable unmanned aerial vehicles.Its key and main goal is to get the infrared image of a specific target.Infrared physical model is established through a theoretical research,thus the temperature field is available.Then infrared image of a specific target can be simulated properly while taking atmosphere state and effect of infrared imaging system into account.For recent years,some research has been done in this field.Among them,the infrared simulation for large scale is still a key problem to be solved.In this passage,a method of classification based on texture blending is proposed and this method effectively solves the problem of classification of large number of images and increase the frame rate of large infrared scene rendering.The paper aims to discuss these issues.Design/methodology/approach-Mosart Atmospheric Tool(MAT)is used first to calculate data of sun radiance,skyshine radiance,path radiance,temperatures of different material which is an offline process.Then,shader in OGRE does final calculation to get simulation result and keeps a high frame rate.Considering this,the authors convert data in MAT file into textures which can be easily handled by shader.In shader responding,radiance can be indexed by information of material,vertex normal,eye and sun.Adding the effect of infrared imaging system,the final radiance distribution is obtained.At last,the authors get infrared scene by converting radiance to grayscale.Findings-In the fragment shader,fake infrared textures are used to look up temperature which can calculate radiance of itself and related radiance.Research limitations/implications-The radiance is transferred into grayscale image while considering effect of infrared imaging system.Originality/value-Simulation results show that a high frame rate can be reached while guaranteeing the fidelity.
基金co-supported by China Postdoctoral Science Foundation (20090461314)
文摘Dynamic infrared scene simulation is for discovering and solving the problems encountered in designing, developing and manufacturing infrared imaging guidance weapons. The infrared scene simulation is explored by using the digital grayscale modulation method. The infrared image modulation model of a digital micro-mirror device (DMD) is established and then the infrared scene simulator prototype which is based on DMD grayscale modulation is developed. To evaluate its main parameters such as resolution, contrast, minimum temperature difference, gray scale, various DMD subsystems such as signal decoding, image normalization, synchronization drive, pulse width modulation (PWM) and DMD chips are designed. The infrared scene simulator is tested on a certain infrared missile seeker. The test results show preliminarily that the infrared scene simulator has high gray scale, small geometrical distortion and highly resolvable imaging resolution and contrast and yields high-fidelity images, thus being able to meet the requirements for the infrared scene simulation inside a laboratory.
基金This work was supported by the National Natural Science Foundation of China(12102356).
文摘The infrared radiation characteristics of aircraft are a key focus in attack-defense confrontation and early warning detection.A rapid simulation method for calculating the infrared characteristics of targets is proposed by combining the discrete transfer method.By constructing the aerodynamic shape of a Su-27-like aircraft,the flow field parameters and skin temperature under cruise conditions were calculated.The proposed method was used to generate infrared images and calculate infrared radiation intensity at various detection angles,and perform speed tests.The results indicate that this method has high accuracy;the generated infrared image is clear,accurate,and can be used to identify the characteristic attributes of the target.In the pitch detection plane,the total infrared radiation intensity of the aircraft exhibits a“8”distribution,with the fuselage contributing the most(approximately 50%).In the yaw plane,the vertical stabilizer’s infrared radiation intensity shows a lobed distribution,with peaks at 60°and 120°.The method can achieve a calculation speed of four times per second for a single detection angle,meeting real-time processing requirements and providing valuable data for infrared target recognition algorithms.