Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process...Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging.展开更多
Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.Howev...Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.However,simply adjusting weights and imposing hard constraints may not always lead to better learning of the initial conditions;sometimes it even makes it difficult for the neural networks to converge.To enhance the accuracy of PINNs in learning the initial conditions,this paper proposes a novel strategy named causally enhanced initial conditions(CEICs).This strategy works by embedding a new loss in the loss function:the loss is constructed by the derivative of the initial condition and the derivative of the neural network at the initial condition.Furthermore,to respect the causality in learning the derivative,a novel causality coefficient is introduced for the training when selecting multiple derivatives.Additionally,because CEICs can provide more accurate pseudo-labels in the first subdomain,they are compatible with the temporal-marching strategy.Experimental results demonstrate that CEICs outperform hard constraints and improve the overall accuracy of pre-training PINNs.For the 1D-Korteweg–de Vries,reaction and convection equations,the CEIC method proposed in this paper reduces the relative error by at least 60%compared to the previous methods.展开更多
Similar to many fields of sciences,recent deep learning advances have been applied extensively in geosciences for both small-and large-scale problems.However,the necessity of using large training data and the’black ...Similar to many fields of sciences,recent deep learning advances have been applied extensively in geosciences for both small-and large-scale problems.However,the necessity of using large training data and the’black box’nature of learning have limited them in practice and difficult to interpret.Furthermore,including the governing equations and physical facts in such methods is also another challenge,which entails either ignoring the physics or simplifying them using unrealistic data.To address such issues,physics informed machine learning methods have been developed which can integrate the governing physics law into the learning process.In this work,a 1-dimensional(1 D)time-dependent seismic wave equation is considered and solved using two methods,namely Gaussian process(GP)and physics informed neural networks.We show that these meshless methods are trained by smaller amount of data and can predict the solution of the equation with even high accuracy.They are also capable of inverting any parameter involved in the governing equation such as wave velocity in our case.Results show that the GP can predict the solution of the seismic wave equation with a lower level of error,while our developed neural network is more accurate for velocity(P-and S-wave)and density inversion.展开更多
This study proposes a supervised learning method that does not rely on labels.We use variables associated with the label as indirect labels,and construct an indirect physics-constrained loss based on the physical mech...This study proposes a supervised learning method that does not rely on labels.We use variables associated with the label as indirect labels,and construct an indirect physics-constrained loss based on the physical mechanism to train the model.In the training process,the model prediction is mapped to the space of value that conforms to the physical mechanism through the projection matrix,and then the model is trained based on the indirect labels.The final prediction result of the model conforms to the physical mechanism between indirect label and label,and also meets the constraints of the indirect label.The present study also develops projection matrix normalization and prediction covariance analysis to ensure that the model can be fully trained.Finally,the effect of the physics-constrained indirect supervised learning is verified based on a well log generation problem.展开更多
Neural network methods have been widely used in many fields of scientific research with the rapid increase of computing power.The physics-informed neural networks(PINNs)have received much attention as a major breakthr...Neural network methods have been widely used in many fields of scientific research with the rapid increase of computing power.The physics-informed neural networks(PINNs)have received much attention as a major breakthrough in solving partial differential equations using neural networks.In this paper,a resampling technique based on the expansion-shrinkage point(ESP)selection strategy is developed to dynamically modify the distribution of training points in accordance with the performance of the neural networks.In this new approach both training sites with slight changes in residual values and training points with large residuals are taken into account.In order to make the distribution of training points more uniform,the concept of continuity is further introduced and incorporated.This method successfully addresses the issue that the neural network becomes ill or even crashes due to the extensive alteration of training point distribution.The effectiveness of the improved physics-informed neural networks with expansion-shrinkage resampling is demonstrated through a series of numerical experiments.展开更多
Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engi-neering domains.Gas turbine blade cooling,refrigeration,and electronic equipment cooling are a few prevalent ...Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engi-neering domains.Gas turbine blade cooling,refrigeration,and electronic equipment cooling are a few prevalent applications.Thus,the thermal analysis of extended surfaces has been the subject of a significant assessment by researchers.Motivated by this,the present study describes the unsteady thermal dispersal phenomena in a wavy fin with the presence of convection heat transmission.This analysis also emphasizes a novel mathematical model in accordance with transient thermal change in a wavy profiled fin resulting from convection using the finite difference method(FDM)and physics informed neural network(PINN).The time and space-dependent governing partial differential equation(PDE)for the suggested heat problem has been translated into a dimensionless form using the relevant dimensionless terms.The graph depicts the effect of thermal parameters on the fin’s thermal profile.The temperature dispersion in the fin decreases as the dimensionless convection-conduction variable rises.The heat dispersion in the fin is decreased by increasing the aspect ratio,whereas the reverse behavior is seen with the time change.Furthermore,FDM-PINN results are validated against the outcomes of the FDM.展开更多
The noninvasive evaluation of the cardiac function presents a great interest for the diagnosis of cardiovascular diseases. Tagged cardiac MRI allows the measurement of anatomical and functional myocardial parameters. ...The noninvasive evaluation of the cardiac function presents a great interest for the diagnosis of cardiovascular diseases. Tagged cardiac MRI allows the measurement of anatomical and functional myocardial parameters. This protocol generates a dark grid which is deformed with the myocardium displacement on both Short-Axis (SA) and Long-Axis (LA) frames in a time sequence. Visual evaluation of the grid deformation allows the estimation of the displacement inside the myocardium. The work described in this paper aims to make robust and reliable the visual enhancement of the grid tags on cardiac MRI sequences, thanks to an informational formalism based on Extreme Physical Informational (EPI). This approach leads to the development of an original diffusion pre-processing allowing us to make better the robustness of the visual detection and the following of the grid of tags.展开更多
In this paper,we introduce a new deep learning framework for discovering the phase-field models from existing image data.The new framework embraces the approximation power of physics informed neural networks(PINNs)and...In this paper,we introduce a new deep learning framework for discovering the phase-field models from existing image data.The new framework embraces the approximation power of physics informed neural networks(PINNs)and the computational efficiency of the pseudo-spectral methods,which we named pseudo-spectral PINN or SPINN.Unlike the baseline PINN,the pseudo-spectral PINN has several advantages.First of all,it requires less training data.A minimum of two temporal snapshots with uniform spatial resolution would be adequate.Secondly,it is computationally efficient,as the pseudo-spectral method is used for spatial discretization.Thirdly,it requires less trainable parameters compared with the baseline PINN,which significantly simplifies the training process and potentially assures fewer local minima or saddle points.We illustrate the effectiveness of pseudo-spectral PINN through several numerical examples.The newly proposed pseudo-spectral PINN is rather general,and it can be readily applied to discover other FDE-based models from image data.展开更多
Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14(2009)574) proposed a block encryption algorithm based on dynamic sequences of multiple c...Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14(2009)574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks" and to keep all the merits of the original cryptosystem.展开更多
In the theory of physical information, the physical phenomena of electromagnetism, quantum mechanics and gravity can be described by means of the action as information enclosed in four dimensional structures with osci...In the theory of physical information, the physical phenomena of electromagnetism, quantum mechanics and gravity can be described by means of the action as information enclosed in four dimensional structures with oscillator properties, under the conditions of the Hamilton principle. The present report shows that it is also possible to simulate the behaviour of the mass under these conditions. As a result, among other things, the statements are obtained that the mass is stored virtual action;the rest frame of elementary objects and the inertia of matter are caused by the action stored in the mass oscillators.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpret...Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM.展开更多
Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neur...Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neural networks(PINN)provide a new way to solve the nonlinear Schrodinger equation describing the soliton evolution by fusing data-driven and physical constraints.However,the grid point sampling strategy of traditional PINN suffers from high computational complexity and unstable gradient flow,which makes it difficult to capture the physical details efficiently.In this paper,we propose a residual-based adaptive multi-distribution(RAMD)sampling method to optimize the PINN training process by dynamically constructing a multi-modal loss distribution.With a 50%reduction in the number of grid points,RAMD significantly reduces the relative error of PINN and,in particular,optimizes the solution error of the(2+1)Ginzburg–Landau equation from 4.55%to 1.98%.RAMD breaks through the lack of physical constraints in the purely data-driven model by the innovative combination of multi-modal distribution modeling and autonomous sampling control for the design of all-optical communication devices.RAMD provides a high-precision numerical simulation tool for the design of all-optical communication devices,optimization of nonlinear laser devices,and other studies.展开更多
Partial Differential Equations(PDEs)are model candidates of soft sensing for aero-engine health management units.The existing Physics-Informed Neural Networks(PINNs)have made achievements.However,unmeasurable aero-eng...Partial Differential Equations(PDEs)are model candidates of soft sensing for aero-engine health management units.The existing Physics-Informed Neural Networks(PINNs)have made achievements.However,unmeasurable aero-engine driving sources lead to unknown PDE driving terms,which weaken PINNs feasibility.To this end,Physically Informed Hierarchical Learning followed by Recurrent-Prediction Term(PIHL-RPT)is proposed.First,PIHL is proposed for learning nonhomogeneous PDE solutions,in which two networks NetU and NetG are constructed.NetU is for learning solutions satisfying PDEs;NetG is for learning driving terms to regularize NetU training.Then,we propose a hierarchical learning strategy to optimize and couple NetU and NetG,which are integrated into a data-physics-hybrid loss function.Besides,we prove PIHL-RPT can iteratively generate a series of networks converging to a function,which can approximate a solution to well-posed PDE.Furthermore,RPT is proposed for prediction improvement of PIHL,in which network NetU-RP is constructed to compensate for information loss caused by data sampling and driving sources’immeasurability.Finally,artificial datasets and practical vibration process datasets from our wear experiment platform are used to verify the feasibility and effectiveness of PIHL-RPT based soft sensing.Meanwhile,comparisons with relevant methods,discussions,and PIHL-RPT based health monitoring example are given.展开更多
The task of achieving high-accuracy full-field reconstruction in the realm of water waves is widely acknowledged as a challenge,primarily due to the sparsity and incompleteness of data measurement in both temporal and...The task of achieving high-accuracy full-field reconstruction in the realm of water waves is widely acknowledged as a challenge,primarily due to the sparsity and incompleteness of data measurement in both temporal and spatial dimensions.We develop a full-field velocity and pressure reconstruction approach for non-linear water waves based on physics-informed neural networks from the free surface measurement.The fully non-linear highly dispersive Boussinesq model is integrated to reduce the training cost by representing the three dimensional water wave problems in the horizontal two-dimensional plane with the inherent veloc-ity distribution along water depth.A series of test cases,including the solitary waves,fifth-order Stokes waves,standing waves,and superimposed waves,are employed to evaluate the performance of the algorithm.The proposed novel neural networks are capable of accurately reconstructing the flow fields even when assimilating the limited and sparse free surface deformation data,which facilitates the development of detecting the flow characteristics in real ocean waves.展开更多
High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitori...High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitoring,and seismic resilience assessment of buildings.To improve the accuracy and efficiency of structural response prediction,this study proposes a novel physics-informed deep-learning-based realtime structural response prediction method that can predict a large number of nodes in a structure through a data-driven training method and an autoregressive training strategy.The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model,thereby enabling higher-precision predictions.Experiments were conducted on a four-story masonry structure,an eleven-story reinforced concrete irregular structure,and a twenty-one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method.In addition,the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study.Furthermore,by conducting a comparative experiment,the impact of the range of seismic wave amplitudes on the prediction accuracy was studied.The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures.展开更多
Using the method presented recently [Phys.Rev.A 77(2008)014306; Phys.Lett.A 369(2007)377], the transformation operator (TO) is explicitly given for teleporting an arbitrary three-qubit state with a six-qubit cha...Using the method presented recently [Phys.Rev.A 77(2008)014306; Phys.Lett.A 369(2007)377], the transformation operator (TO) is explicitly given for teleporting an arbitrary three-qubit state with a six-qubit channel and Bell-state measurements. A criterion on whether such quantum teleportation can be perfectly realized is educed in terms of TO. Moreover, six instantiations on TO and criterion are concisely shown.展开更多
We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases w...We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases while the fictitious-mode vacuum becomes chaotic.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12122403 and 12327807).
文摘Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging.
基金supported by the National Natural Science Foundation of China(Grant Nos.1217211 and 12372244).
文摘Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.However,simply adjusting weights and imposing hard constraints may not always lead to better learning of the initial conditions;sometimes it even makes it difficult for the neural networks to converge.To enhance the accuracy of PINNs in learning the initial conditions,this paper proposes a novel strategy named causally enhanced initial conditions(CEICs).This strategy works by embedding a new loss in the loss function:the loss is constructed by the derivative of the initial condition and the derivative of the neural network at the initial condition.Furthermore,to respect the causality in learning the derivative,a novel causality coefficient is introduced for the training when selecting multiple derivatives.Additionally,because CEICs can provide more accurate pseudo-labels in the first subdomain,they are compatible with the temporal-marching strategy.Experimental results demonstrate that CEICs outperform hard constraints and improve the overall accuracy of pre-training PINNs.For the 1D-Korteweg–de Vries,reaction and convection equations,the CEIC method proposed in this paper reduces the relative error by at least 60%compared to the previous methods.
文摘Similar to many fields of sciences,recent deep learning advances have been applied extensively in geosciences for both small-and large-scale problems.However,the necessity of using large training data and the’black box’nature of learning have limited them in practice and difficult to interpret.Furthermore,including the governing equations and physical facts in such methods is also another challenge,which entails either ignoring the physics or simplifying them using unrealistic data.To address such issues,physics informed machine learning methods have been developed which can integrate the governing physics law into the learning process.In this work,a 1-dimensional(1 D)time-dependent seismic wave equation is considered and solved using two methods,namely Gaussian process(GP)and physics informed neural networks.We show that these meshless methods are trained by smaller amount of data and can predict the solution of the equation with even high accuracy.They are also capable of inverting any parameter involved in the governing equation such as wave velocity in our case.Results show that the GP can predict the solution of the seismic wave equation with a lower level of error,while our developed neural network is more accurate for velocity(P-and S-wave)and density inversion.
基金partially funded by the National Natural Science Foundation of China (Grants 51520105005 and U1663208)
文摘This study proposes a supervised learning method that does not rely on labels.We use variables associated with the label as indirect labels,and construct an indirect physics-constrained loss based on the physical mechanism to train the model.In the training process,the model prediction is mapped to the space of value that conforms to the physical mechanism through the projection matrix,and then the model is trained based on the indirect labels.The final prediction result of the model conforms to the physical mechanism between indirect label and label,and also meets the constraints of the indirect label.The present study also develops projection matrix normalization and prediction covariance analysis to ensure that the model can be fully trained.Finally,the effect of the physics-constrained indirect supervised learning is verified based on a well log generation problem.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFC1807905)the National Natural Science Foundation of China(Grant Nos.52079090 and U20A20316)the Basic Research Program of Qinghai Province(Grant No.2022-ZJ-704).
文摘Neural network methods have been widely used in many fields of scientific research with the rapid increase of computing power.The physics-informed neural networks(PINNs)have received much attention as a major breakthrough in solving partial differential equations using neural networks.In this paper,a resampling technique based on the expansion-shrinkage point(ESP)selection strategy is developed to dynamically modify the distribution of training points in accordance with the performance of the neural networks.In this new approach both training sites with slight changes in residual values and training points with large residuals are taken into account.In order to make the distribution of training points more uniform,the concept of continuity is further introduced and incorporated.This method successfully addresses the issue that the neural network becomes ill or even crashes due to the extensive alteration of training point distribution.The effectiveness of the improved physics-informed neural networks with expansion-shrinkage resampling is demonstrated through a series of numerical experiments.
基金supported by the Researchers Supporting Project number (RSPD2024R526),King Saud University,Riyadh,Saudi Arabi.
文摘Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engi-neering domains.Gas turbine blade cooling,refrigeration,and electronic equipment cooling are a few prevalent applications.Thus,the thermal analysis of extended surfaces has been the subject of a significant assessment by researchers.Motivated by this,the present study describes the unsteady thermal dispersal phenomena in a wavy fin with the presence of convection heat transmission.This analysis also emphasizes a novel mathematical model in accordance with transient thermal change in a wavy profiled fin resulting from convection using the finite difference method(FDM)and physics informed neural network(PINN).The time and space-dependent governing partial differential equation(PDE)for the suggested heat problem has been translated into a dimensionless form using the relevant dimensionless terms.The graph depicts the effect of thermal parameters on the fin’s thermal profile.The temperature dispersion in the fin decreases as the dimensionless convection-conduction variable rises.The heat dispersion in the fin is decreased by increasing the aspect ratio,whereas the reverse behavior is seen with the time change.Furthermore,FDM-PINN results are validated against the outcomes of the FDM.
文摘The noninvasive evaluation of the cardiac function presents a great interest for the diagnosis of cardiovascular diseases. Tagged cardiac MRI allows the measurement of anatomical and functional myocardial parameters. This protocol generates a dark grid which is deformed with the myocardium displacement on both Short-Axis (SA) and Long-Axis (LA) frames in a time sequence. Visual evaluation of the grid deformation allows the estimation of the displacement inside the myocardium. The work described in this paper aims to make robust and reliable the visual enhancement of the grid tags on cardiac MRI sequences, thanks to an informational formalism based on Extreme Physical Informational (EPI). This approach leads to the development of an original diffusion pre-processing allowing us to make better the robustness of the visual detection and the following of the grid of tags.
基金the support from NSF DMS-1816783NVIDIA Corporation for their donation of a Quadro P6000 GPU for conducting some of the numerical simulations in this paper.
文摘In this paper,we introduce a new deep learning framework for discovering the phase-field models from existing image data.The new framework embraces the approximation power of physics informed neural networks(PINNs)and the computational efficiency of the pseudo-spectral methods,which we named pseudo-spectral PINN or SPINN.Unlike the baseline PINN,the pseudo-spectral PINN has several advantages.First of all,it requires less training data.A minimum of two temporal snapshots with uniform spatial resolution would be adequate.Secondly,it is computationally efficient,as the pseudo-spectral method is used for spatial discretization.Thirdly,it requires less trainable parameters compared with the baseline PINN,which significantly simplifies the training process and potentially assures fewer local minima or saddle points.We illustrate the effectiveness of pseudo-spectral PINN through several numerical examples.The newly proposed pseudo-spectral PINN is rather general,and it can be readily applied to discover other FDE-based models from image data.
基金Supported by the National Natural Science Foundation of China under Grant No 61003256, the Natural Science Foundation of CQ CSTC (Nos 2009BB2282 and 2008BB2193), the Doctor Foundation of Chongqing University of Posts and Telecommunications (A2009-01), and the Foundation of Chongqing Key Laboratory of Electronic Commerce and Logistics (Nos ECML1003 and ECML1010).
文摘Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14(2009)574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks" and to keep all the merits of the original cryptosystem.
文摘In the theory of physical information, the physical phenomena of electromagnetism, quantum mechanics and gravity can be described by means of the action as information enclosed in four dimensional structures with oscillator properties, under the conditions of the Hamilton principle. The present report shows that it is also possible to simulate the behaviour of the mass under these conditions. As a result, among other things, the statements are obtained that the mass is stored virtual action;the rest frame of elementary objects and the inertia of matter are caused by the action stored in the mass oscillators.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
基金Supported in part by Science Center for Gas Turbine Project(Project No.P2022-DC-I-003-001)National Natural Science Foundation of China(Grant No.52275130).
文摘Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604200)National Natural Science Foundation of China(Grant No.12261131495)+1 种基金Beijing Municipal Science and Technology Commission,Adminitrative Commission of Zhongguancun Science Park(Grant No.Z231100006623006)Institute of Systems Science,Beijing Wuzi University(Grant No.BWUISS21)。
文摘Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neural networks(PINN)provide a new way to solve the nonlinear Schrodinger equation describing the soliton evolution by fusing data-driven and physical constraints.However,the grid point sampling strategy of traditional PINN suffers from high computational complexity and unstable gradient flow,which makes it difficult to capture the physical details efficiently.In this paper,we propose a residual-based adaptive multi-distribution(RAMD)sampling method to optimize the PINN training process by dynamically constructing a multi-modal loss distribution.With a 50%reduction in the number of grid points,RAMD significantly reduces the relative error of PINN and,in particular,optimizes the solution error of the(2+1)Ginzburg–Landau equation from 4.55%to 1.98%.RAMD breaks through the lack of physical constraints in the purely data-driven model by the innovative combination of multi-modal distribution modeling and autonomous sampling control for the design of all-optical communication devices.RAMD provides a high-precision numerical simulation tool for the design of all-optical communication devices,optimization of nonlinear laser devices,and other studies.
基金supported in part by the National Science and Technology Major Project of China(No.2019-I-0019-0018)the National Natural Science Foundation of China(Nos.61890920,61890921,12302065 and 12172073).
文摘Partial Differential Equations(PDEs)are model candidates of soft sensing for aero-engine health management units.The existing Physics-Informed Neural Networks(PINNs)have made achievements.However,unmeasurable aero-engine driving sources lead to unknown PDE driving terms,which weaken PINNs feasibility.To this end,Physically Informed Hierarchical Learning followed by Recurrent-Prediction Term(PIHL-RPT)is proposed.First,PIHL is proposed for learning nonhomogeneous PDE solutions,in which two networks NetU and NetG are constructed.NetU is for learning solutions satisfying PDEs;NetG is for learning driving terms to regularize NetU training.Then,we propose a hierarchical learning strategy to optimize and couple NetU and NetG,which are integrated into a data-physics-hybrid loss function.Besides,we prove PIHL-RPT can iteratively generate a series of networks converging to a function,which can approximate a solution to well-posed PDE.Furthermore,RPT is proposed for prediction improvement of PIHL,in which network NetU-RP is constructed to compensate for information loss caused by data sampling and driving sources’immeasurability.Finally,artificial datasets and practical vibration process datasets from our wear experiment platform are used to verify the feasibility and effectiveness of PIHL-RPT based soft sensing.Meanwhile,comparisons with relevant methods,discussions,and PIHL-RPT based health monitoring example are given.
基金supported by the Narional Nanre Science Foundarion of China(Grand Nos 12202272 and U22B6010)。
文摘The task of achieving high-accuracy full-field reconstruction in the realm of water waves is widely acknowledged as a challenge,primarily due to the sparsity and incompleteness of data measurement in both temporal and spatial dimensions.We develop a full-field velocity and pressure reconstruction approach for non-linear water waves based on physics-informed neural networks from the free surface measurement.The fully non-linear highly dispersive Boussinesq model is integrated to reduce the training cost by representing the three dimensional water wave problems in the horizontal two-dimensional plane with the inherent veloc-ity distribution along water depth.A series of test cases,including the solitary waves,fifth-order Stokes waves,standing waves,and superimposed waves,are employed to evaluate the performance of the algorithm.The proposed novel neural networks are capable of accurately reconstructing the flow fields even when assimilating the limited and sparse free surface deformation data,which facilitates the development of detecting the flow characteristics in real ocean waves.
基金support from the National Natural Science Foundation of China(52025083 and U2139209)XPLORER PRIZE of New Cornerstone Science Foundation,the Shanghai Social Development Science and Technology Research Project(22dz1201400)the Shanghai Urban Digital Transformation Special Fund(202201033).
文摘High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitoring,and seismic resilience assessment of buildings.To improve the accuracy and efficiency of structural response prediction,this study proposes a novel physics-informed deep-learning-based realtime structural response prediction method that can predict a large number of nodes in a structure through a data-driven training method and an autoregressive training strategy.The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model,thereby enabling higher-precision predictions.Experiments were conducted on a four-story masonry structure,an eleven-story reinforced concrete irregular structure,and a twenty-one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method.In addition,the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study.Furthermore,by conducting a comparative experiment,the impact of the range of seismic wave amplitudes on the prediction accuracy was studied.The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52006232)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019020)。
基金Supported by the New Century Excellent Talent Project (NCET) of the Ministry of Education of China under Grant No NCET-06-0554, the National Natural Science Foundation of China under Grant Nos 10975001, 60677001, 10747146 and 10874122, the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No 06042087, the Key Fund of the Ministry of Education of China under Grant No 206063, the General Fund of the Educational Committee of Anhui Province under Grant No 2006KJ260B, the Natural Science Foundation of Guangdong Province under Grant Nos 06300345 and 7007806, and the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No 2009SQRZ018.
文摘Using the method presented recently [Phys.Rev.A 77(2008)014306; Phys.Lett.A 369(2007)377], the transformation operator (TO) is explicitly given for teleporting an arbitrary three-qubit state with a six-qubit channel and Bell-state measurements. A criterion on whether such quantum teleportation can be perfectly realized is educed in terms of TO. Moreover, six instantiations on TO and criterion are concisely shown.
文摘We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases while the fictitious-mode vacuum becomes chaotic.
基金supported by the National Natural Science Foundation of China(Grant No.91852117)the foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research(Grant No.614220121040106)Shanghai Rising-Star Program(Grant No.19QC1400200)。