Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the ...Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.展开更多
With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasu...With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.展开更多
Photoswitchable fluorescent polymeric nanoparticles were widely concerned because of their excellent features including the flexible design,easy preparation and functionalization,and thus exhibited great application p...Photoswitchable fluorescent polymeric nanoparticles were widely concerned because of their excellent features including the flexible design,easy preparation and functionalization,and thus exhibited great application potential in information encryption,anti-counterfeiting,but remained challenging in improving the security.Herein,we described a self-erased time-resolved information encryption via using photoswitchable dual-color fluorescent polymeric nanoparticles(PDFPNs)containing two fluorescence dyes(blue and red)and photochromic spiroxazine derivatives.In view of the different thermo-induced isomerization rates of photochromic spiroxazine derivatives in different flexible substrates,the decoloration rate of PDFPNs can be programmatically tuned by regulating ratio between rigid polymer and flexible polymer.Therefore,after ultraviolet light(UV)irradiation,correct information could only be recognized in preestablished time during the self-erased process.Our results indicated that PDFPNs exhibited fast photo-responsibility(2 min),high fluorescence contrast,well-pleasing photo-reversibility(>20 times),and programmable thermo-responsiveness(24 s-6 h).We thus demonstrated their application in the selferased time-resolved information encryption and anti-counterfeiting with high security.展开更多
Due to the wide and adjustable emission range,Ce^(3+)is an indispensable luminous center for full spectrum lighting.However,it needs to be sintered at high temperature in a reducing atmosphere,resulting in difficulty ...Due to the wide and adjustable emission range,Ce^(3+)is an indispensable luminous center for full spectrum lighting.However,it needs to be sintered at high temperature in a reducing atmosphere,resulting in difficulty to coexisting with other multivalent activated ions(such as Eu^(3+),Tm^(3+)),which greatly hinders the formation of full spectrum.In this study,a calcium vacancy enhanced self-reduction of Ce^(4+)is realized in CaNaSb_(2)O_(6)F(CNSOF)host under air atmosphere sintering,through which Ce^(3+),Tm^(3+)and Eu^(3+)coexisting in a single-phase full spectrum phosphor was prepared.Notably,the artificial introduction of a calcium vacancy was designed to verify this self-reduction mechanism.Moreover,the energy transfer kinetics among Tm^(3+),Ce^(3+)and Eu^(3+)were explored.Finally,combined with a 340 nm UV chip,a full spectrum phosphor-converted light-emitting diode(pc-LED)was fabricated,showing a broad emission range from 400 to 750 nm,Commission Internationale de I'Edairage(CIE)of(0.3485,0.3673),Ra of 92 and correlated color temperature(CCT)of 4933 K.Utilizing the variation in emission colors of this phosphor under different UV wavelengths,a dual encryption method combining point character code and fluorescent encryption technique is proposed.This work provides an effective path for Ce^(4+)self-reduction to apply in full spectrum pc-LED and information encryption.展开更多
Luminescent nanoclusters(NCs)have attracted much attention because of their superior photophysical properties;however,the design of dynamic NCs with reversible structural change is highly challenging.Herein,we synthes...Luminescent nanoclusters(NCs)have attracted much attention because of their superior photophysical properties;however,the design of dynamic NCs with reversible structural change is highly challenging.Herein,we synthesize a kind of dynamic luminescent NCs through Schiff base crosslinking between triethylenetetramine(TETA)and tannic acid at room temperature.The proposed NCs have an excitation-independent blue emission,and the maximum emission is available at about 458 nm with two excitation centers.Furthermore,the crosslinking degree of the NCs can be effectively adjusted by TETA and their formation is a kineticcontrol process.Most importantly,the proposed NCs show a property of pHcontrolled reversible depolymerization and polymerization,accompanied by a cyclic“on-off-on”photoswitching,which is directly attributed to pH-stimulated reversible C=N bond cleavage and re-formation.Because of the reversible structure change properties,the dynamic NCs have been well used in reversible information encryption.This new finding provides not only us with a powerful strategy to study the structure–properties relationship of luminescent NCs but also a design idea for constructing smart optical nanomaterials.展开更多
Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in w...Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in white-light-including multicolor fluorescence with time-dynamic features remains challenging.Herein,controlling molecular assembly on time scale is achieved by integrating a pH-responsive motif to a transient alkaline solution which is fabricated by activators(NaOH)and deactivators(esters),leading to automatic assembly on time scale and time-dependent multicolor fluorescence changing from blue to white and yellow.The kinetics of the assembly process is dependent on the ester hydrolysis process,which can be controlled by varying ester concentrations,temperature,initial pH,stirring rate and ester structures.This dynamic fluorescent system can be further developed for intelligent fluorescent materials such as fluorescent ink,three-dimension(3D)codes and even four-dimension(4D)codes,exhibiting a promising potential for information encryption.展开更多
Crystal polymers or liquid crystal elastomers undergo a phase transition that results in a change in the corresponding optical properties,which has the potential to be applied in areas such as information encryption a...Crystal polymers or liquid crystal elastomers undergo a phase transition that results in a change in the corresponding optical properties,which has the potential to be applied in areas such as information encryption and anti-counterfeiting.The utilization of these materials for patterning purposes requires different phase transition temperatures.However,once prepared,altering the phase transition temperature of them presents significant challenges.Herein,a poly(oxime-ester)(POE)network is developed to achieve high-resolution and multilevel patterning by photo-induced isomerization.The as-prepared POE exhibits the ability to transition from an opaque state to a transparent state under temperature stimuli,with the transition temperature and kinetics dependent on UV light exposure time.Thus,complex patterns and information can be encrypted through different selective regional exposure time and decrypted under specific temperature or cooling time.Furthermore,we illustrate an example of temporal communication,where cooling time or temperature serves as the encoded information.This research expands the application scope of advanced encryption materials,showcasing the potential of POE in dynamic information encryption and decryption processes.展开更多
A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)...A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)∶Eu^(3+)can produce red mechanoluminescence,and importantly,it shows good repeatability.The mechanoluminescence of Ca_(5)Ga_(6)O_(14)∶Eu^(3+) results from the piezoelectric field generated inside the material under stress,rather than the charge carriers stored in the traps,which can be confirmed by the multiple cycles of mechanoluminescence tests and heat treatment tests.The mechanoluminescence color can be turned from red to green by co-doping varied concentrations of Tb^(3+),which may be meaningful for encrypted letter writing.The encryption scheme for secure communication was devised by harnessing mechanoluminescence patterns in diverse shapes and ASCII codes,which shows good encryption performance.The results suggest that the mechanoluminescence phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+),Tb^(3+)may be applied to the optical information encryption.展开更多
Mimicking tactile perception is critical to the development of advanced interactive neuromorphic platforms.Inspired by cutaneous perceptual functions,a bionic tactile perceptual platform is proposed.PDMS-based tactile...Mimicking tactile perception is critical to the development of advanced interactive neuromorphic platforms.Inspired by cutaneous perceptual functions,a bionic tactile perceptual platform is proposed.PDMS-based tactile sensors act as bionic skin touch receptors.Flexible indium tin oxide neuromorphic transistors fabricated with a single-step mask pro-cessing act as artificial synapses.Thus,the tactile perceptual platform possesses the ability of information processing.Interestingly,the flexible tactile perception platform can find applications in information encryption and decryption.With adoption of cipher,signal transmitted by the perception platform is encrypted.Thus,the security of information transmis-sion is effectively improved.The flexible tactile perceptual platform would have potentials in cognitive wearable devices,advanced human-machine interaction system,and intelligent bionic robots.展开更多
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
Perovskites showcased potential promise for innovative circularly polarized luminescence (CPL)-active multi-channelinformation encryption, owing to the exceptional luminescence brightness. It was still a formidablecha...Perovskites showcased potential promise for innovative circularly polarized luminescence (CPL)-active multi-channelinformation encryption, owing to the exceptional luminescence brightness. It was still a formidablechallenge to fabricate CPL-active perovskites with significant luminescent asymmetry factor (glum) and full-colour-tailorableCPL properties. Indeed, compared to isotropic perovskites, anisotropic perovskite nanowires (NWs)were conducive to carrier separation and transport for polarization enhancement. Herein, three types of CsPb(Br/I)3 NWs with green, orange, red fluorescence (FL) were respectively synthesized and assembled into chiral NWfilms. The right-handed/left-handed chiral NW films constructed by 4+4 layers and 45° inter-angles exhibitshighly symmetric and mirror-like chiral signals. The strongest chiral intensity is more than 3000 medg. CPLsignals with wide colour gamut produce ranging from 480 nm to 800 nm, and tailorable CPL wavelengths aremanipulated by the emission wavelength of perovskite NWs. A giant CPL signal with a maximum glum of up to 10^(-1) is achieved. The polarization imaging of chiral NW films produces brilliant differential circularly polarizedstructural colours, making it more widely used in multilevel anti-counterfeiting systems. A significant break-throughlies in the development of advanced chiral perovskite materials with remarkable glum and tailorable CPLproperties, which sheds new light on optical anti-counterfeiting and intelligent information encryption.展开更多
Despite great progress in developing mode-selective light emission technologies based on self-emitting materials,few rewritable displays with modeselective multiple light emissions have been demonstrated.Herein,we pre...Despite great progress in developing mode-selective light emission technologies based on self-emitting materials,few rewritable displays with modeselective multiple light emissions have been demonstrated.Herein,we present a rewritable triple-mode light-emitting display enabled by stimuli-interactive fluorescence(FL),room-temperature phosphorescence(RTP),and electroluminescence(EL).The display comprises coplanar electrodes separated by a gap,a polymer composite with FL inorganic phosphors(EL/FL layer),and a polymer composite with solvent-responsive RTP additives(RTP layer).Upon 254 nm UV exposure,a dual-mode emission of RTP and FL occurs from the RTP and EL/FL layers,respectively.When a polar liquid,besides water,is applied on the display and an AC field is applied between the coplanar electrodes,EL from the EL/FL layer is triggered,and the display operates in a triple mode.Interestingly,when water is applied to the display,the RTP mode is deactivated,rendering the display to operate in a dual mode of FL and EL.By manipulating the evaporation of the applied polar liquids and water,the mode-selective light emission of FL,RTP,and EL is rewritable in the triple-mode display.Additionally,a high-security full-color information encryption display is demonstrated,wherein the information of digital numbers,letters,and Morse code encoded in one optical mode is only deciphered when properly matched with that encoded in the other two modes.Thus,this article outlines a strategy to fulfill the substantial demand for high-security personalized information based on room-temperature multi-light-emitting displays.展开更多
Recently circularly polarized luminescence(CPL)materials have attracted significant interest.Introducing reversible dynamic property to these materials has been a key focus in cutting-edge fields,such as in high-level...Recently circularly polarized luminescence(CPL)materials have attracted significant interest.Introducing reversible dynamic property to these materials has been a key focus in cutting-edge fields,such as in high-level information encryption.Here,we provided a novel and general strategy involving handednessselective filtration and ground-state chiral self-recovery(CSR)in double film system to address this issue.Based on this strategy,we achieved CPL switch through the reversible modulation of ground-state chirality including absorption and scattering circular dichroism(CD)signals over the full UV-visible wavelength range(365-700 nm)in a single azobenzene polymer(PAzo)film.More importantly,by flexibly changing the type of fluorescent films,it is convenient to achieve general excited-state CSR,that is reversible switching of full-color including ideal white(CIE coordinate(0.33,0.33)),as well as room-temperature phosphorescent CPL.All these CPL signals without almost any intensity decay after three cycles of onand-off switching.Experimental results indicated that the trans-cis isomerization and ordered rearrangement of azobenzene units in PAzo film were the fundamental reasons for realizing CPL switching.Finally,based on this system we achieved dynamic visual encryption and decryption process including multiple decryption methods.This study provides an effective method for constructing a universally applicable chiroptical switch in excited state.展开更多
Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the ...Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks.展开更多
Optical orbital angular momentum(OAM)multiplexed holography has been implemented as an effective method for information encryption and storage.Multiramp helicoconical-OAM multiplexed holography is proposed and experim...Optical orbital angular momentum(OAM)multiplexed holography has been implemented as an effective method for information encryption and storage.Multiramp helicoconical-OAM multiplexed holography is proposed and experimentally implemented.The mode selectivity of the multiramp mixed screw-edge dislocations,constant parameter K,and normalized factor are investigated,respectively,which demonstrates that those parameters can be used as additional coding degrees of freedom for holographic multiplexing.The combination of the topological charge and the other three parameters can provide a four-dimensional multiplexed holography and can enhance information capacity.展开更多
To realize single-stimulus-induced simultaneous multi-behaviors in hydrogels is still quite challenging nowadays.Herein,an intelli gent pH-responsive hydrogel(BP4VA/PAS)with rapid and high contrast changes in color,fl...To realize single-stimulus-induced simultaneous multi-behaviors in hydrogels is still quite challenging nowadays.Herein,an intelli gent pH-responsive hydrogel(BP4VA/PAS)with rapid and high contrast changes in color,fluorescence,and shape simultaneously is reported The BP4VA/PAS hydrogel is fabricated by incorporating styryl anthracene derivative(BP4VA)into copolymer networks(PAS)of acrylamide and sodium 4-styrene sulfonate.Under acid conditions,the protonation of BP4VA generates a rapid change with high color contrast from yellow to red and a fluorescence switch between bright green and weak red emission.At the same time,the electrostatic interactions between 2H-BP4VA^(2+)and sulfonate anions suspended on PAS trigger BP4VA/PAS hydrogels to shrink.Upon alkaline treatment,the 2H-BP4VA^(2+)/PAS hydrogel deproto nates and recovers to its original color,fluorescence,and shape.Furthermore,utilizing rapid and remarkable pH-responsive properties o BP4VA/PAS hydrogels,we successfully demonstrated its applications in biomimicry,camouflage,and multistage information encryption.Collec tively,this work provided an elegant strategy to develop intelligent hydrogels in applications of biomimetic smart materials and information en cryption.展开更多
Fluorescent materials that respond to multiple stimuli have broad applications ranging from sensing and bioimaging to information encryption.Herein,we report the design and synthesis of a single-fluorophorebased amphi...Fluorescent materials that respond to multiple stimuli have broad applications ranging from sensing and bioimaging to information encryption.Herein,we report the design and synthesis of a single-fluorophorebased amphiphile DCSO,which shows temperature-,solvent-,humidity-,and radiation-dependent fluorescence.DCSO consists of a dicyanostilbene(DCS)group as a rigid hydrophobic core with oligo(ethylene glycol)(OEG)chains at both ends as a flexible hydrophilic periphery.The DCS group acts as a highly efficient fluorophore,while the OEG chain endows the molecule with thermo-responsiveness.Fluorescent colors can vary from blue to green to yellow in response to external stimuli.On the basis of light radiation,we demonstrate that this system can be applied to time-dependent information encryption,in which the correct information can only be read at a specific time under irradiation.This work further demonstrates the usefulness and application of single-fluorophore-based luminescent materials with multiple stimuli-responsive functions.展开更多
Long afterglow organic-inorganic hybrid materials have attracted much attention in recent years and are widely used in information security, biological imaging and many other fields. Since up-conversion long-persisten...Long afterglow organic-inorganic hybrid materials have attracted much attention in recent years and are widely used in information security, biological imaging and many other fields. Since up-conversion long-persistence materials are promising for bio-optical imaging due to their high penetration depth and elimination of autofluorescence background, it is highly desirable to combine down-conversion and up-conversion pathways to obtain smart materials with excitation-dependent tunable room-temperature phosphorescence properties. In this work, a metal-organic framework(Zn-DCPS-BIMB), consisting of divalent zinc ions, o-bis(imidazol-1-ylmethyl)benzene and 4,4-dicarboxydiphenylsulfone, is designed to stabilize triplet excitons, coordinate the emission of different ligands, and endow materials with tunable emission color and up-conversion properties via heavy atoms effects promoting single-triplet orbital coupling and intersystem crossing.展开更多
The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional...The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional dimensions to enhance storage capabilities.We propose and implement orbital angular momentum lattice(OAML)multiplexed holography.The vortex lattice(VL)beam comprises three adjustable parameters:the rotation angle of the VL,the angle between the wave normal and the z axis,which determines the VL’s dimensions,and the topological charge.Both the rotation angle and the VL’s dimensions serve as supplementary encrypted dimensions,contributing azimuthally and radially,respectively.We investigate the mode selectivity of OAML and focus on the aforementioned parameters.Through experimental validation,we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions.This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.展开更多
Developing high-performance circularly polarized luminescence(CPL)materials with large luminescence dissymmetry factors(g_(lum))remains challenging.We demonstrate that covalently anchoring an anthraquinone(AQ)chromoph...Developing high-performance circularly polarized luminescence(CPL)materials with large luminescence dissymmetry factors(g_(lum))remains challenging.We demonstrate that covalently anchoring an anthraquinone(AQ)chromophore to a chiral LC network via a synergistic noncovalent-covalent approach,unlike the common strategy of noncovalent doping of luminophores into chiral liquid crystals(LCs)to enhance glum,can achieve an unprecedented glum value of up to 1.73.The predoped AQ chromophores are capable of undergoing a photoinduced topochemical addition reaction with the diarylacetylene component of SLC1717 LC,leading to the formation of covalently anchored emitters embedded in the LC network and the realization of boosted CPL signals.The structural similarity of the in-situ-generated emitters with LC components enabled satisfactory orientation within the original LC,contributing to nearly pure output of circularly polarized light through a selective reflection mechanism.The remarkable photochromism and CPL properties were subsequently harnessed to develop photopattern generation and,particularly,the design of Morse code multiple information encryption.This work introduces a brand-new strategy for the fabrication of CPL LC materials with extremely large g_(lum) values,opening up the possibility of covalent anchoring of chromophores to ordered chiral structures to design high performance CPL systems.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.21971040,22171045,and 22371046)。
文摘Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.
基金financial supports from National Key Research and Development Program of China(No.2022YFB3806200)。
文摘With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.
基金financially supported by the National Key R&D Program of China(Nos.2023YFB3812400,2023YFB3812403)National Natural Foundation of China(Nos.52273206,52350233)+1 种基金Hunan Provincial Natural Science Foundation(No.2021JJ10029)Huxiang High-level Talent Gathering Project(No.2022RC4039).
文摘Photoswitchable fluorescent polymeric nanoparticles were widely concerned because of their excellent features including the flexible design,easy preparation and functionalization,and thus exhibited great application potential in information encryption,anti-counterfeiting,but remained challenging in improving the security.Herein,we described a self-erased time-resolved information encryption via using photoswitchable dual-color fluorescent polymeric nanoparticles(PDFPNs)containing two fluorescence dyes(blue and red)and photochromic spiroxazine derivatives.In view of the different thermo-induced isomerization rates of photochromic spiroxazine derivatives in different flexible substrates,the decoloration rate of PDFPNs can be programmatically tuned by regulating ratio between rigid polymer and flexible polymer.Therefore,after ultraviolet light(UV)irradiation,correct information could only be recognized in preestablished time during the self-erased process.Our results indicated that PDFPNs exhibited fast photo-responsibility(2 min),high fluorescence contrast,well-pleasing photo-reversibility(>20 times),and programmable thermo-responsiveness(24 s-6 h).We thus demonstrated their application in the selferased time-resolved information encryption and anti-counterfeiting with high security.
基金Project supported by National Natural Science Foundation of China(62075203,12304460)Zhejiang Provincial Natural Science Foundation of China(LQ23A040007)Basic Public Welfare Research Program of Zhejiang Province(LDT23F05013F05)。
文摘Due to the wide and adjustable emission range,Ce^(3+)is an indispensable luminous center for full spectrum lighting.However,it needs to be sintered at high temperature in a reducing atmosphere,resulting in difficulty to coexisting with other multivalent activated ions(such as Eu^(3+),Tm^(3+)),which greatly hinders the formation of full spectrum.In this study,a calcium vacancy enhanced self-reduction of Ce^(4+)is realized in CaNaSb_(2)O_(6)F(CNSOF)host under air atmosphere sintering,through which Ce^(3+),Tm^(3+)and Eu^(3+)coexisting in a single-phase full spectrum phosphor was prepared.Notably,the artificial introduction of a calcium vacancy was designed to verify this self-reduction mechanism.Moreover,the energy transfer kinetics among Tm^(3+),Ce^(3+)and Eu^(3+)were explored.Finally,combined with a 340 nm UV chip,a full spectrum phosphor-converted light-emitting diode(pc-LED)was fabricated,showing a broad emission range from 400 to 750 nm,Commission Internationale de I'Edairage(CIE)of(0.3485,0.3673),Ra of 92 and correlated color temperature(CCT)of 4933 K.Utilizing the variation in emission colors of this phosphor under different UV wavelengths,a dual encryption method combining point character code and fluorescent encryption technique is proposed.This work provides an effective path for Ce^(4+)self-reduction to apply in full spectrum pc-LED and information encryption.
基金supported by the National Natural Science Foundation of China(52273197 and 52333007)Shenzhen Key Laboratory of Functional Aggregate Materials(ZDSYS20211021111400001)+2 种基金the Science and Technology Plan of Shenzhen(JCYJ2021324134613038,JCYJ20220818103007014,KQTD20210811090142053,GJHZ20210705141810031)the Innovation and Technology Commission(ITC-CNERC14SC01)Tianjin Key Medical Discipline(Specialty)Construction Project.
文摘Luminescent nanoclusters(NCs)have attracted much attention because of their superior photophysical properties;however,the design of dynamic NCs with reversible structural change is highly challenging.Herein,we synthesize a kind of dynamic luminescent NCs through Schiff base crosslinking between triethylenetetramine(TETA)and tannic acid at room temperature.The proposed NCs have an excitation-independent blue emission,and the maximum emission is available at about 458 nm with two excitation centers.Furthermore,the crosslinking degree of the NCs can be effectively adjusted by TETA and their formation is a kineticcontrol process.Most importantly,the proposed NCs show a property of pHcontrolled reversible depolymerization and polymerization,accompanied by a cyclic“on-off-on”photoswitching,which is directly attributed to pH-stimulated reversible C=N bond cleavage and re-formation.Because of the reversible structure change properties,the dynamic NCs have been well used in reversible information encryption.This new finding provides not only us with a powerful strategy to study the structure–properties relationship of luminescent NCs but also a design idea for constructing smart optical nanomaterials.
基金supported by the National Natural Science Foundation of China(Nos.22220102004,22025503)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX03)+4 种基金the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD40)the Fundamental Research Funds for the Central Universitiesthe Programme of Introducing Talents of Discipline to Universities(No.B16017)Science and Technology Commission of Shanghai Municipality(No.21JC1401700)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(No.SN-ZJU-SIAS-006)。
文摘Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in white-light-including multicolor fluorescence with time-dynamic features remains challenging.Herein,controlling molecular assembly on time scale is achieved by integrating a pH-responsive motif to a transient alkaline solution which is fabricated by activators(NaOH)and deactivators(esters),leading to automatic assembly on time scale and time-dependent multicolor fluorescence changing from blue to white and yellow.The kinetics of the assembly process is dependent on the ester hydrolysis process,which can be controlled by varying ester concentrations,temperature,initial pH,stirring rate and ester structures.This dynamic fluorescent system can be further developed for intelligent fluorescent materials such as fluorescent ink,three-dimension(3D)codes and even four-dimension(4D)codes,exhibiting a promising potential for information encryption.
基金supported by the National Natural Science Foundation of China(No.22005061)the Natural Science Foundation of Jiangxi Province(No.20224BAB214009).
文摘Crystal polymers or liquid crystal elastomers undergo a phase transition that results in a change in the corresponding optical properties,which has the potential to be applied in areas such as information encryption and anti-counterfeiting.The utilization of these materials for patterning purposes requires different phase transition temperatures.However,once prepared,altering the phase transition temperature of them presents significant challenges.Herein,a poly(oxime-ester)(POE)network is developed to achieve high-resolution and multilevel patterning by photo-induced isomerization.The as-prepared POE exhibits the ability to transition from an opaque state to a transparent state under temperature stimuli,with the transition temperature and kinetics dependent on UV light exposure time.Thus,complex patterns and information can be encrypted through different selective regional exposure time and decrypted under specific temperature or cooling time.Furthermore,we illustrate an example of temporal communication,where cooling time or temperature serves as the encoded information.This research expands the application scope of advanced encryption materials,showcasing the potential of POE in dynamic information encryption and decryption processes.
文摘A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)∶Eu^(3+)can produce red mechanoluminescence,and importantly,it shows good repeatability.The mechanoluminescence of Ca_(5)Ga_(6)O_(14)∶Eu^(3+) results from the piezoelectric field generated inside the material under stress,rather than the charge carriers stored in the traps,which can be confirmed by the multiple cycles of mechanoluminescence tests and heat treatment tests.The mechanoluminescence color can be turned from red to green by co-doping varied concentrations of Tb^(3+),which may be meaningful for encrypted letter writing.The encryption scheme for secure communication was devised by harnessing mechanoluminescence patterns in diverse shapes and ASCII codes,which shows good encryption performance.The results suggest that the mechanoluminescence phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+),Tb^(3+)may be applied to the optical information encryption.
基金Project supported by the National Natural Science Foundation of China(Grant No.51972316)Ningbo Key Scientific and Technological Project(Grant No.2021Z116).
文摘Mimicking tactile perception is critical to the development of advanced interactive neuromorphic platforms.Inspired by cutaneous perceptual functions,a bionic tactile perceptual platform is proposed.PDMS-based tactile sensors act as bionic skin touch receptors.Flexible indium tin oxide neuromorphic transistors fabricated with a single-step mask pro-cessing act as artificial synapses.Thus,the tactile perceptual platform possesses the ability of information processing.Interestingly,the flexible tactile perception platform can find applications in information encryption and decryption.With adoption of cipher,signal transmitted by the perception platform is encrypted.Thus,the security of information transmis-sion is effectively improved.The flexible tactile perceptual platform would have potentials in cognitive wearable devices,advanced human-machine interaction system,and intelligent bionic robots.
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金supported by the National Natural Science Foundation of China(22278184,22272065)the Natural Science Foundation of Jiangsu Province(BK20211530)+1 种基金the Fundamental Research Funds for the Central Universities(JUSRP622018,JUSRP202404022)the Key Research and Development Special Project of Yichun City,Jiangxi Province,China(2023ZDYFZX06).
文摘Perovskites showcased potential promise for innovative circularly polarized luminescence (CPL)-active multi-channelinformation encryption, owing to the exceptional luminescence brightness. It was still a formidablechallenge to fabricate CPL-active perovskites with significant luminescent asymmetry factor (glum) and full-colour-tailorableCPL properties. Indeed, compared to isotropic perovskites, anisotropic perovskite nanowires (NWs)were conducive to carrier separation and transport for polarization enhancement. Herein, three types of CsPb(Br/I)3 NWs with green, orange, red fluorescence (FL) were respectively synthesized and assembled into chiral NWfilms. The right-handed/left-handed chiral NW films constructed by 4+4 layers and 45° inter-angles exhibitshighly symmetric and mirror-like chiral signals. The strongest chiral intensity is more than 3000 medg. CPLsignals with wide colour gamut produce ranging from 480 nm to 800 nm, and tailorable CPL wavelengths aremanipulated by the emission wavelength of perovskite NWs. A giant CPL signal with a maximum glum of up to 10^(-1) is achieved. The polarization imaging of chiral NW films produces brilliant differential circularly polarizedstructural colours, making it more widely used in multilevel anti-counterfeiting systems. A significant break-throughlies in the development of advanced chiral perovskite materials with remarkable glum and tailorable CPLproperties, which sheds new light on optical anti-counterfeiting and intelligent information encryption.
基金supported by the Creative Materials Discovery Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(2022M3C1A3081211)This study was also supported by a grant from the NRF funded by MSIT(RS-2023-00208577)+1 种基金This study was financially supported by the Nano&Material Technology Development Program through the NRF funded by MSIT(RS-2024-00451891 and RS-2024-00416938)by the Open Resource Research Program of the Korea Institute of Science and Technology(2E32961).
文摘Despite great progress in developing mode-selective light emission technologies based on self-emitting materials,few rewritable displays with modeselective multiple light emissions have been demonstrated.Herein,we present a rewritable triple-mode light-emitting display enabled by stimuli-interactive fluorescence(FL),room-temperature phosphorescence(RTP),and electroluminescence(EL).The display comprises coplanar electrodes separated by a gap,a polymer composite with FL inorganic phosphors(EL/FL layer),and a polymer composite with solvent-responsive RTP additives(RTP layer).Upon 254 nm UV exposure,a dual-mode emission of RTP and FL occurs from the RTP and EL/FL layers,respectively.When a polar liquid,besides water,is applied on the display and an AC field is applied between the coplanar electrodes,EL from the EL/FL layer is triggered,and the display operates in a triple mode.Interestingly,when water is applied to the display,the RTP mode is deactivated,rendering the display to operate in a dual mode of FL and EL.By manipulating the evaporation of the applied polar liquids and water,the mode-selective light emission of FL,RTP,and EL is rewritable in the triple-mode display.Additionally,a high-security full-color information encryption display is demonstrated,wherein the information of digital numbers,letters,and Morse code encoded in one optical mode is only deciphered when properly matched with that encoded in the other two modes.Thus,this article outlines a strategy to fulfill the substantial demand for high-security personalized information based on room-temperature multi-light-emitting displays.
基金the financial support from the National Natural Science Foundation of China(Nos.22301206,92356305 and 22301208)Natural Science Foundation of Anhui Province(No.2308085J15)+5 种基金Natural Science Foundation of Anhui Provincial Higher Education Institutions(No.2023AH010012)China Post-doctoral Science Foundation(No.2022M722312)the Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Functionthe Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsJiangsu Funding Program for Excellent Postdoctoral Talentthe Program of Innovative Research Team of Soochow University。
文摘Recently circularly polarized luminescence(CPL)materials have attracted significant interest.Introducing reversible dynamic property to these materials has been a key focus in cutting-edge fields,such as in high-level information encryption.Here,we provided a novel and general strategy involving handednessselective filtration and ground-state chiral self-recovery(CSR)in double film system to address this issue.Based on this strategy,we achieved CPL switch through the reversible modulation of ground-state chirality including absorption and scattering circular dichroism(CD)signals over the full UV-visible wavelength range(365-700 nm)in a single azobenzene polymer(PAzo)film.More importantly,by flexibly changing the type of fluorescent films,it is convenient to achieve general excited-state CSR,that is reversible switching of full-color including ideal white(CIE coordinate(0.33,0.33)),as well as room-temperature phosphorescent CPL.All these CPL signals without almost any intensity decay after three cycles of onand-off switching.Experimental results indicated that the trans-cis isomerization and ordered rearrangement of azobenzene units in PAzo film were the fundamental reasons for realizing CPL switching.Finally,based on this system we achieved dynamic visual encryption and decryption process including multiple decryption methods.This study provides an effective method for constructing a universally applicable chiroptical switch in excited state.
基金supported by the National Natural Science Foundation of China(62122057,62075136,62105217,62205221,62205222)the Basic and Applied Basic Research Foundation of Guangdong Province(2022B1515120061)Shenzhen Science and Technology Program(Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing ZDSYS20220606100405013,RCYX20200714114524139,JCYJ20200109114001806)。
文摘Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks.
基金supported by the National Natural Science Foundation of China(Grant No.61775153)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Optical orbital angular momentum(OAM)multiplexed holography has been implemented as an effective method for information encryption and storage.Multiramp helicoconical-OAM multiplexed holography is proposed and experimentally implemented.The mode selectivity of the multiramp mixed screw-edge dislocations,constant parameter K,and normalized factor are investigated,respectively,which demonstrates that those parameters can be used as additional coding degrees of freedom for holographic multiplexing.The combination of the topological charge and the other three parameters can provide a four-dimensional multiplexed holography and can enhance information capacity.
基金financially supported by the National Natural Science Foundation of China(Nos.51373025 and 22005021)Beijing Natural Science Foundation(No.2242044)+2 种基金the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-003A1)China Postdoctoral Science Foundation(No.2023M730311)the Program for New Century Excellent Talents in University(No.NCET-11-0582)。
文摘To realize single-stimulus-induced simultaneous multi-behaviors in hydrogels is still quite challenging nowadays.Herein,an intelli gent pH-responsive hydrogel(BP4VA/PAS)with rapid and high contrast changes in color,fluorescence,and shape simultaneously is reported The BP4VA/PAS hydrogel is fabricated by incorporating styryl anthracene derivative(BP4VA)into copolymer networks(PAS)of acrylamide and sodium 4-styrene sulfonate.Under acid conditions,the protonation of BP4VA generates a rapid change with high color contrast from yellow to red and a fluorescence switch between bright green and weak red emission.At the same time,the electrostatic interactions between 2H-BP4VA^(2+)and sulfonate anions suspended on PAS trigger BP4VA/PAS hydrogels to shrink.Upon alkaline treatment,the 2H-BP4VA^(2+)/PAS hydrogel deproto nates and recovers to its original color,fluorescence,and shape.Furthermore,utilizing rapid and remarkable pH-responsive properties o BP4VA/PAS hydrogels,we successfully demonstrated its applications in biomimicry,camouflage,and multistage information encryption.Collec tively,this work provided an elegant strategy to develop intelligent hydrogels in applications of biomimetic smart materials and information en cryption.
基金supported by the National Natural Science Foundation of China(No.21702020)partially supported by the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(No.SN-ZJU-SIAS-006).
文摘Fluorescent materials that respond to multiple stimuli have broad applications ranging from sensing and bioimaging to information encryption.Herein,we report the design and synthesis of a single-fluorophorebased amphiphile DCSO,which shows temperature-,solvent-,humidity-,and radiation-dependent fluorescence.DCSO consists of a dicyanostilbene(DCS)group as a rigid hydrophobic core with oligo(ethylene glycol)(OEG)chains at both ends as a flexible hydrophilic periphery.The DCS group acts as a highly efficient fluorophore,while the OEG chain endows the molecule with thermo-responsiveness.Fluorescent colors can vary from blue to green to yellow in response to external stimuli.On the basis of light radiation,we demonstrate that this system can be applied to time-dependent information encryption,in which the correct information can only be read at a specific time under irradiation.This work further demonstrates the usefulness and application of single-fluorophore-based luminescent materials with multiple stimuli-responsive functions.
基金supported by the Beijing Municipal Natural Science Foundation (No. JQ20003)the National Natural Science Foundation of China (Nos. 21771021, 21822501 and 22061130206)+3 种基金the Newton Advanced Fellowship award (No. NAFR1201285)the Fok Ying-Tong Education Foundation (No. 171008)the Measurements Fund of Beijing Normal Universitythe State Key Laboratory of Heavy Oil Processing。
文摘Long afterglow organic-inorganic hybrid materials have attracted much attention in recent years and are widely used in information security, biological imaging and many other fields. Since up-conversion long-persistence materials are promising for bio-optical imaging due to their high penetration depth and elimination of autofluorescence background, it is highly desirable to combine down-conversion and up-conversion pathways to obtain smart materials with excitation-dependent tunable room-temperature phosphorescence properties. In this work, a metal-organic framework(Zn-DCPS-BIMB), consisting of divalent zinc ions, o-bis(imidazol-1-ylmethyl)benzene and 4,4-dicarboxydiphenylsulfone, is designed to stabilize triplet excitons, coordinate the emission of different ligands, and endow materials with tunable emission color and up-conversion properties via heavy atoms effects promoting single-triplet orbital coupling and intersystem crossing.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030009)the National Natural Science Foundation of China (Grant Nos.61935013,62375181,and 61975133)+1 种基金the Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Shenzhen Peacock Plan (Grant No.KQTD20170330110444030).
文摘The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional dimensions to enhance storage capabilities.We propose and implement orbital angular momentum lattice(OAML)multiplexed holography.The vortex lattice(VL)beam comprises three adjustable parameters:the rotation angle of the VL,the angle between the wave normal and the z axis,which determines the VL’s dimensions,and the topological charge.Both the rotation angle and the VL’s dimensions serve as supplementary encrypted dimensions,contributing azimuthally and radially,respectively.We investigate the mode selectivity of OAML and focus on the aforementioned parameters.Through experimental validation,we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions.This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.
基金supported by the National Natural Science Foundation of China(grant nos.22322207,92356307,and 52321006)the National Key Research and Development Program of China(grant no.2022YFA1204402)+1 种基金the Beijing Nova Program(grant no.20220484071)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant no.XDB0520201).
文摘Developing high-performance circularly polarized luminescence(CPL)materials with large luminescence dissymmetry factors(g_(lum))remains challenging.We demonstrate that covalently anchoring an anthraquinone(AQ)chromophore to a chiral LC network via a synergistic noncovalent-covalent approach,unlike the common strategy of noncovalent doping of luminophores into chiral liquid crystals(LCs)to enhance glum,can achieve an unprecedented glum value of up to 1.73.The predoped AQ chromophores are capable of undergoing a photoinduced topochemical addition reaction with the diarylacetylene component of SLC1717 LC,leading to the formation of covalently anchored emitters embedded in the LC network and the realization of boosted CPL signals.The structural similarity of the in-situ-generated emitters with LC components enabled satisfactory orientation within the original LC,contributing to nearly pure output of circularly polarized light through a selective reflection mechanism.The remarkable photochromism and CPL properties were subsequently harnessed to develop photopattern generation and,particularly,the design of Morse code multiple information encryption.This work introduces a brand-new strategy for the fabrication of CPL LC materials with extremely large g_(lum) values,opening up the possibility of covalent anchoring of chromophores to ordered chiral structures to design high performance CPL systems.