Digital watermarking must balance imperceptibility,robustness,complexity,and security.To address the challenge of computational efficiency in trellis-based informed embedding,we propose a modified watermarking framewo...Digital watermarking must balance imperceptibility,robustness,complexity,and security.To address the challenge of computational efficiency in trellis-based informed embedding,we propose a modified watermarking framework that integrates fuzzy c-means(FCM)clustering into the generation off block codewords for labeling trellis arcs.The system incorporates a parallel trellis structure,controllable embedding parameters,and a novel informed embedding algorithm with reduced complexity.Two types of embedding schemes—memoryless and memory-based—are designed to flexibly trade-off between imperceptibility and robustness.Experimental results demonstrate that the proposed method outperforms existing approaches in bit error rate(BER)and computational complexity under various attacks,including additive noise,filtering,JPEG compression,cropping,and rotation.The integration of FCM enhances robustness by increasing the codeword distance,while preserving perceptual quality.Overall,the proposed framework is suitable for real-time and secure watermarking applications.展开更多
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili...Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.展开更多
This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated...This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.展开更多
基金funded by the National Science and Technology Council,Taiwan,under grant number NSTC 114-2221-E-167-005-MY3,and NSTC 113-2221-E-167-006-.
文摘Digital watermarking must balance imperceptibility,robustness,complexity,and security.To address the challenge of computational efficiency in trellis-based informed embedding,we propose a modified watermarking framework that integrates fuzzy c-means(FCM)clustering into the generation off block codewords for labeling trellis arcs.The system incorporates a parallel trellis structure,controllable embedding parameters,and a novel informed embedding algorithm with reduced complexity.Two types of embedding schemes—memoryless and memory-based—are designed to flexibly trade-off between imperceptibility and robustness.Experimental results demonstrate that the proposed method outperforms existing approaches in bit error rate(BER)and computational complexity under various attacks,including additive noise,filtering,JPEG compression,cropping,and rotation.The integration of FCM enhances robustness by increasing the codeword distance,while preserving perceptual quality.Overall,the proposed framework is suitable for real-time and secure watermarking applications.
基金Supported by the National Defense Basic Scientific Research Program of China.
文摘Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.
文摘This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.