期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improved performance of process monitoring based on selection of key principal components 被引量:2
1
作者 宋冰 马玉鑫 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1951-1957,共7页
Conventional principal component analysis(PCA) can obtain low-dimensional representations of original data space, but the selection of principal components(PCs) based on variance is subjective, which may lead to infor... Conventional principal component analysis(PCA) can obtain low-dimensional representations of original data space, but the selection of principal components(PCs) based on variance is subjective, which may lead to information loss and poor monitoring performance. To address dimension reduction and information preservation simultaneously, this paper proposes a novel PC selection scheme named full variable expression. On the basis of the proposed relevance of variables with each principal component, key principal components can be determined.All the key principal components serve as a low-dimensional representation of the entire original variables, preserving the information of original data space without information loss. A squared Mahalanobis distance, which is introduced as the monitoring statistic, is calculated directly in the key principal component space for fault detection. To test the modeling and monitoring performance of the proposed method, a numerical example and the Tennessee Eastman benchmark are used. 展开更多
关键词 Principal component analysis information loss Fault detection Key principal component
在线阅读 下载PDF
Computational implementation of a GIS developed tool for prediction of dynamic ground movement and deformation due to underground extraction sequence 被引量:3
2
作者 Yue Cai Yujing Jiang +1 位作者 Baoguo Liu Ibrahim Djamaluddin 《International Journal of Coal Science & Technology》 EI 2016年第4期379-398,共20页
In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational meth... In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational methods have been supported in civil engineering, subsidence engineering and mining engineering practice. However, ground movement problem due to mining extraction sequence is effectively four dimensional (4D). A rational prediction is getting more and more important for long-term underground mining planning. Hence, computer-based analytical methods that realistically simulate spatially distributed time-dependent ground movement process are needed for the reliable long-term underground mining planning to minimize the surface environmental damages. In this research, a new computational system is developed to simulate four-dimensional (4D) ground movement by combining a stochastic medium theory, Knothe time-delay model and geographic information system (GIS) technology. All the calculations are implemented by a computational program, in which the components of GIS are used to fulfill the spatial-temporal analysis model. In this paper a tight coupling strategy based on component object model of GIS technology is used to overcome the problems of complex three-dimensional extraction model and spatial data integration. Moreover, the implementation of computational of the interfaces of the developed tool is described. The GIS based developed tool is validated by two study cases. The developed computational tool and models are achieved within the GIS system so the effective and efficient calculation methodology can be obtained, so the simulation problems of 4D ground movement due to underground mining extraction sequence can be solved by implementation of the developed tool in GIS. 展开更多
关键词 Computational model Geographical information system - component object model - Complex mining geometry Ground deformation Surface subsidence
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部