We investigate the extended (2+ 1)-dimensional shaUow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Backlund transformation, Lax pair, and Darboux covariant Lax ...We investigate the extended (2+ 1)-dimensional shaUow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Backlund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11075055 and 11275072)the Innovative Research Team Program of the National Natural Science Foundation of China (Grant No. 61021004)+1 种基金the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China(Grant No. ZF1213)the National High Technology Research and Development Program of China (Grant No. 2011AA010101)
文摘We investigate the extended (2+ 1)-dimensional shaUow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Backlund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method.