With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This p...A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers.展开更多
Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot...Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot be neglected.In this study,an algorithm is introduced for calculating the space charge force of a train with infinite bunches.By utilizing the ring charge model and the particle-in-cell(PIC)method and combining analytical and numerical methods,the proposed algorithm efficiently calculates the space charge force of infinite bunches,enabling the accurate design of accelerator parameters and a comprehensive understanding of the space charge force.This is a significant improvement on existing simulation software such as ASTRA and PARMELA that can only handle a single bunch or a small number of bunches.The PIC algorithm is validated in long drift space transport by comparing it with existing models,such as the infinite-bunch,ASTRA single-bunch,and PARMELA several-bunch algorithms.The space charge force calculation results for the external acceleration field are also verified.The reliability of the proposed algorithm provides a foundation for the design and optimization of industrial accelerators.展开更多
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre...This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.展开更多
Let I be the set of all infinitely divisible random variables with finite second moments,I_(0)={X∈I;Var(X)>0},P_(I)=inf_(x∈I)P{|X-E[X]|≤√Var(X)}and P_(I_(0))=inf P{|X-E[X]|<√Var(X)}.Firstly,we prove that P_...Let I be the set of all infinitely divisible random variables with finite second moments,I_(0)={X∈I;Var(X)>0},P_(I)=inf_(x∈I)P{|X-E[X]|≤√Var(X)}and P_(I_(0))=inf P{|X-E[X]|<√Var(X)}.Firstly,we prove that P_(I)≥P_(I_(0))>0.Secondly,we find_(x∈I_(0))the exact values of inf P{|X-E[X]|≤√Var(X)}and inf P{|X-E[X]|<√Var(X)}for the cases that J is the set of all geometric random variables,symmetric geometric random variables,Poisson random variables and symmetric Poisson random variables,respectively.As a consequence,we obtain that P_(I)≤e^(-1)^(∞)∑_(k=0)1/2^(2k)(k!)^(2)≈0.46576 and P_(I_(0))≤e^(-1)≈0.36788.展开更多
The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.I...The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.In this study,the problem was solved by introducing an innovative 2.5-dimensional(2.5D)Voronoi numerical simulation method,dividing rock layers into 2.5D Voronoi blocks and developing cohesive element-based failure models,supported by a strain-softening HoekeBrown model.The method was applied to the 8311 working face in the Taishan Mine in China,and its accuracy was confirmed through physical experiments.The following conclusions were drawn.The first roof break typically followed an"O-X"pattern.The direct roof did not break randomly over time;instead,it followed three distinct scenarios:(1)A complete break of the direct roof occurred,followed by a sequential collapse(ScenarioⅠ).(2)Regional irregular stacking in one area was followed by sequential collapse in other zones(ScenarioⅡ).(3)The staged breakdown of the direct roof led to separate and sequential collapses on the left and right flanks(ScenarioⅢ).Scenario I was quite common during the 400 m advance of the working face and occurred five times.The fracture characteristics in Scenario I led to widespread pressure on the hydraulic supports in the middle of the working face.Finally,the direct roof from the working face towards the goaf area underwent phases of overhanging,hinging,and collapsing plates.After the first and periodic breaks,the basic roof formed stable hinged plate structures reinforced by overhanging plates and irregular accumulations of the direct roof.展开更多
Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equatio...Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.展开更多
In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilin...In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.展开更多
A theory based on the superposition principle is developed to uncover the basic physics of wave behavior in a finite grating of N unit cells.The theory reveals that bound states in the continuum(BICs)of infinite quali...A theory based on the superposition principle is developed to uncover the basic physics of wave behavior in a finite grating of N unit cells.The theory reveals that bound states in the continuum(BICs)of infinite quality factor(Q-factor)can be supported by such a grating when perfect reflection is introduced at its boundaries.If geometrical perturbations are introduced into the structure,the dark BICs transform into bright quasi-BICs with finite Q-factor,maintaining spectral characteristics nearly identical to those of quasi-BICs supported by infinite gratings.When the boundaries are replaced with high-reflectivity metallic mirrors,the Q-factor of the resonant mode is reduced to be finite;however,it can be much larger than that in the corresponding nanostructure with open boundaries and can be tuned over a large range by varying the number of unit cells or boundary conditions.展开更多
Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing ...Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.展开更多
By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions o...By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal.展开更多
For the off-diagonal infinite dimensional Hamiltonian operators, which have at most countable eigenvalues, a necessary and sufficient condition of the eigenfunction systems to be complete in the sense of Cauchy princi...For the off-diagonal infinite dimensional Hamiltonian operators, which have at most countable eigenvalues, a necessary and sufficient condition of the eigenfunction systems to be complete in the sense of Cauchy principal value is presented by using the spectral symmetry and new orthogonal relationship of the operators. Moreover, the above result is extended to a more general case. At last, the completeness of eigenfunction systems for the operators arising from the isotropic plane magnetoelectroelastic solids is described to illustrate the effectiveness of the criterion. The whole results offer theoretical guarantee for separation of variables in Hamiltonian system for some mechanics equations.展开更多
We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability...We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability.展开更多
Using factorization viewpoint of differential operator, this paper discusses how to transform a nonlinear evolution equation to infinite-dimensional Hamiltonian linear canonical formulation. It proves a sufficient con...Using factorization viewpoint of differential operator, this paper discusses how to transform a nonlinear evolution equation to infinite-dimensional Hamiltonian linear canonical formulation. It proves a sufficient condition of canonical factorization of operator, and provides a kind of mechanical algebraic method to achieve canonical 'σ/σx'-type expression, correspondingly. Then three examples are given, which show the application of the obtained algorithm. Thus a novel idea for inverse problem can be derived feasibly.展开更多
The reaction of triphenylphosphine with AgNO3 yielded an unusual nitrate anion bridging one-dimensional infinite chain [Ag(PPh3)NO3] in which the silver(I) atom is three-coordinated by one P atom of triphenylphosphine...The reaction of triphenylphosphine with AgNO3 yielded an unusual nitrate anion bridging one-dimensional infinite chain [Ag(PPh3)NO3] in which the silver(I) atom is three-coordinated by one P atom of triphenylphosphine and two O atoms of two bridging nitrate anions to form a scalene triangle. The complex [Ag(PPh3)NO3] crystallizes in the monoclinic system, space group P21/c with a = 10.281(2), b = 18.596(5), c = 9.180(2) , = 90.60(1), V = 1755.1(7) 3, Z = 4, Mr = 432.15, Dc = 1.635 g/cm3, F(000) = 864 and = 1.254 mm-1. The final R = 0.0606 and wR = 0.1400 for 2188 observed reflections with I > 2(I) out of 3057 unique ones (Rint = 0.0539). IR and elemental analysis of the complex are characterized.展开更多
In this paper,the k major cone and strict k major cone in real infinite dimensional linear space are introduced,through which the k major order is defined,and their properties are also discussed.Therefore,with the ...In this paper,the k major cone and strict k major cone in real infinite dimensional linear space are introduced,through which the k major order is defined,and their properties are also discussed.Therefore,with the help of them any two elements in real infinite dimensional linear space can be compared.展开更多
On the basis of the one-dimension infinite element theory, the coordinate translation and shape function of 3D point-radiate 8-node and 4-node infinite elements are derived. They are coupled with 20-node and 8-node fi...On the basis of the one-dimension infinite element theory, the coordinate translation and shape function of 3D point-radiate 8-node and 4-node infinite elements are derived. They are coupled with 20-node and 8-node finite elements to compute the compression distortion of the prestressed anchorage segment. The results indicate that when the prestressed force acts on the anchorage head and segment, the stresses and the displacements in the rock around the anchorage head and segment concentrate on the zone center with the anchor axis, and they decrease with exponential forms. Therefore,the stresses and the displacement spindles are formed. The calculating results of the infinite element are close to the theoretical results. This indicates the method is right. This article introduces a new way to study the mechanism of prestressed anchors. The obtained results have an important role in the research of the anchor mechanism and engineering application.展开更多
This paper presents a novel model-free method to solve linear quadratic(LQ)mean-field control problems with one-dimensional state space and multiplicative noise.The focus is on the infinite horizon LQ setting,where th...This paper presents a novel model-free method to solve linear quadratic(LQ)mean-field control problems with one-dimensional state space and multiplicative noise.The focus is on the infinite horizon LQ setting,where the conditions for solution either stabilization or optimization can be formulated as two algebraic Riccati equations(AREs).The proposed approach leverages the integral reinforcement learning technique to iteratively solve the drift-coefficient-dependent stochastic ARE(SARE)and other indefinite ARE,without requiring knowledge of the system dynamics.A numerical example is given to demonstrate the effectiveness of the proposed algorithm.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlev...A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlevéexpansion method.Subsequently,the residue symmetry is localized to a Lie point symmetry of a prolonged system,from which the finite transformation group is derived.Secondly,the integrability of the 2DmKdV system is examined under the sense of consistent tanh expansion solvability.Simultaneously,explicit soliton-cnoidal wave solutions are provided.Finally,abundant patterns of soliton molecules are presented by imposing the velocity resonance condition on the multiple-soliton solution.展开更多
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.
文摘A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers.
基金supported by the National Key Research and Development Program(No.2022YFC2402300)。
文摘Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot be neglected.In this study,an algorithm is introduced for calculating the space charge force of a train with infinite bunches.By utilizing the ring charge model and the particle-in-cell(PIC)method and combining analytical and numerical methods,the proposed algorithm efficiently calculates the space charge force of infinite bunches,enabling the accurate design of accelerator parameters and a comprehensive understanding of the space charge force.This is a significant improvement on existing simulation software such as ASTRA and PARMELA that can only handle a single bunch or a small number of bunches.The PIC algorithm is validated in long drift space transport by comparing it with existing models,such as the infinite-bunch,ASTRA single-bunch,and PARMELA several-bunch algorithms.The space charge force calculation results for the external acceleration field are also verified.The reliability of the proposed algorithm provides a foundation for the design and optimization of industrial accelerators.
基金supported by the BK21 FOUR funded by the Ministry of Education of Korea and National Research Foundation of Korea,a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 1615013176)IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ICAN(ICT Challenge and Advanced Network of HRD)grant funded by the Korea government(Ministry of Science and ICT)(RS-2024-00438411).
文摘This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.
基金supported by the National Natural Science Foundation of China(12161029,12171335)the National Natural Science Foundation of Hainan Province(121RC149)+1 种基金the Science Development Project of Sichuan University(2020SCUNL201)the Natural Sciences and Engineering Research Council of Canada(4394-2018).
文摘Let I be the set of all infinitely divisible random variables with finite second moments,I_(0)={X∈I;Var(X)>0},P_(I)=inf_(x∈I)P{|X-E[X]|≤√Var(X)}and P_(I_(0))=inf P{|X-E[X]|<√Var(X)}.Firstly,we prove that P_(I)≥P_(I_(0))>0.Secondly,we find_(x∈I_(0))the exact values of inf P{|X-E[X]|≤√Var(X)}and inf P{|X-E[X]|<√Var(X)}for the cases that J is the set of all geometric random variables,symmetric geometric random variables,Poisson random variables and symmetric Poisson random variables,respectively.As a consequence,we obtain that P_(I)≤e^(-1)^(∞)∑_(k=0)1/2^(2k)(k!)^(2)≈0.46576 and P_(I_(0))≤e^(-1)≈0.36788.
基金supported by the Autonomous General Projects of the State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,China(Grant No.2011DA105287-MS202209)the National Natural Science Foundation of China,China(Grant Nos.52304149 and 52204127).
文摘The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.In this study,the problem was solved by introducing an innovative 2.5-dimensional(2.5D)Voronoi numerical simulation method,dividing rock layers into 2.5D Voronoi blocks and developing cohesive element-based failure models,supported by a strain-softening HoekeBrown model.The method was applied to the 8311 working face in the Taishan Mine in China,and its accuracy was confirmed through physical experiments.The following conclusions were drawn.The first roof break typically followed an"O-X"pattern.The direct roof did not break randomly over time;instead,it followed three distinct scenarios:(1)A complete break of the direct roof occurred,followed by a sequential collapse(ScenarioⅠ).(2)Regional irregular stacking in one area was followed by sequential collapse in other zones(ScenarioⅡ).(3)The staged breakdown of the direct roof led to separate and sequential collapses on the left and right flanks(ScenarioⅢ).Scenario I was quite common during the 400 m advance of the working face and occurred five times.The fracture characteristics in Scenario I led to widespread pressure on the hydraulic supports in the middle of the working face.Finally,the direct roof from the working face towards the goaf area underwent phases of overhanging,hinging,and collapsing plates.After the first and periodic breaks,the basic roof formed stable hinged plate structures reinforced by overhanging plates and irregular accumulations of the direct roof.
文摘Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.
基金supported by the National Natural Science Foundation of China,Grant No.12375006。
文摘In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.
基金supported by the National Natural Science Foundation of China(Grant Nos.11874270 and 12174228)the Shenzhen Basic Research Special Project(Grant No.JCYJ20240813141606009)。
文摘A theory based on the superposition principle is developed to uncover the basic physics of wave behavior in a finite grating of N unit cells.The theory reveals that bound states in the continuum(BICs)of infinite quality factor(Q-factor)can be supported by such a grating when perfect reflection is introduced at its boundaries.If geometrical perturbations are introduced into the structure,the dark BICs transform into bright quasi-BICs with finite Q-factor,maintaining spectral characteristics nearly identical to those of quasi-BICs supported by infinite gratings.When the boundaries are replaced with high-reflectivity metallic mirrors,the Q-factor of the resonant mode is reduced to be finite;however,it can be much larger than that in the corresponding nanostructure with open boundaries and can be tuned over a large range by varying the number of unit cells or boundary conditions.
基金financially supported by the Scientific Research Foundation of North China University of Technology (Grant Nos.11005136024XN147-87 and 110051360024XN151-86)。
文摘Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11462020,11262017,and 11262012)the Key Project of Inner Mongolia Normal University,China(Grant No.2014ZD03)
文摘By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal.
基金Supported by the National Natural Science Foundation of China under Grant No. 10962004the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070126002+1 种基金the Natural Science Foundation of Inner Mongolia under Grant No. 20080404MS0104the Research Foundation for Talented Scholars of Inner Mongolia University under Grant No. 207066
文摘For the off-diagonal infinite dimensional Hamiltonian operators, which have at most countable eigenvalues, a necessary and sufficient condition of the eigenfunction systems to be complete in the sense of Cauchy principal value is presented by using the spectral symmetry and new orthogonal relationship of the operators. Moreover, the above result is extended to a more general case. At last, the completeness of eigenfunction systems for the operators arising from the isotropic plane magnetoelectroelastic solids is described to illustrate the effectiveness of the criterion. The whole results offer theoretical guarantee for separation of variables in Hamiltonian system for some mechanics equations.
基金National Natural Science Foundation of China(Grant Nos.11672257,11632008,11772306,and 11972173)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20161314)+1 种基金the 5th 333 High-level Personnel Training Project of Jiangsu Province of China(Grant No.BRA2018324)the Excellent Scientific and Technological Innovation Team of Jiangsu University.
文摘We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability.
基金Project supported by the National Natural Science Foundation of China (Grant No 10562002) and the Natural Science Foundation of Nei Mongol, China (Grant No 200508010103).
文摘Using factorization viewpoint of differential operator, this paper discusses how to transform a nonlinear evolution equation to infinite-dimensional Hamiltonian linear canonical formulation. It proves a sufficient condition of canonical factorization of operator, and provides a kind of mechanical algebraic method to achieve canonical 'σ/σx'-type expression, correspondingly. Then three examples are given, which show the application of the obtained algorithm. Thus a novel idea for inverse problem can be derived feasibly.
基金NNSFC (No. 20001007 20131020) and Natural Science Foundation of the Chinese Academy of Sciences (KJCX2-H3) and Fujian Province (2000F006)
文摘The reaction of triphenylphosphine with AgNO3 yielded an unusual nitrate anion bridging one-dimensional infinite chain [Ag(PPh3)NO3] in which the silver(I) atom is three-coordinated by one P atom of triphenylphosphine and two O atoms of two bridging nitrate anions to form a scalene triangle. The complex [Ag(PPh3)NO3] crystallizes in the monoclinic system, space group P21/c with a = 10.281(2), b = 18.596(5), c = 9.180(2) , = 90.60(1), V = 1755.1(7) 3, Z = 4, Mr = 432.15, Dc = 1.635 g/cm3, F(000) = 864 and = 1.254 mm-1. The final R = 0.0606 and wR = 0.1400 for 2188 observed reflections with I > 2(I) out of 3057 unique ones (Rint = 0.0539). IR and elemental analysis of the complex are characterized.
文摘In this paper,the k major cone and strict k major cone in real infinite dimensional linear space are introduced,through which the k major order is defined,and their properties are also discussed.Therefore,with the help of them any two elements in real infinite dimensional linear space can be compared.
文摘On the basis of the one-dimension infinite element theory, the coordinate translation and shape function of 3D point-radiate 8-node and 4-node infinite elements are derived. They are coupled with 20-node and 8-node finite elements to compute the compression distortion of the prestressed anchorage segment. The results indicate that when the prestressed force acts on the anchorage head and segment, the stresses and the displacements in the rock around the anchorage head and segment concentrate on the zone center with the anchor axis, and they decrease with exponential forms. Therefore,the stresses and the displacement spindles are formed. The calculating results of the infinite element are close to the theoretical results. This indicates the method is right. This article introduces a new way to study the mechanism of prestressed anchors. The obtained results have an important role in the research of the anchor mechanism and engineering application.
文摘This paper presents a novel model-free method to solve linear quadratic(LQ)mean-field control problems with one-dimensional state space and multiplicative noise.The focus is on the infinite horizon LQ setting,where the conditions for solution either stabilization or optimization can be formulated as two algebraic Riccati equations(AREs).The proposed approach leverages the integral reinforcement learning technique to iteratively solve the drift-coefficient-dependent stochastic ARE(SARE)and other indefinite ARE,without requiring knowledge of the system dynamics.A numerical example is given to demonstrate the effectiveness of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the National Natural Science Foundation of China(No.12375006).
文摘A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlevéexpansion method.Subsequently,the residue symmetry is localized to a Lie point symmetry of a prolonged system,from which the finite transformation group is derived.Secondly,the integrability of the 2DmKdV system is examined under the sense of consistent tanh expansion solvability.Simultaneously,explicit soliton-cnoidal wave solutions are provided.Finally,abundant patterns of soliton molecules are presented by imposing the velocity resonance condition on the multiple-soliton solution.