期刊文献+
共找到1,038篇文章
< 1 2 52 >
每页显示 20 50 100
The Effect of Key Nodes on theMalware Dynamics in the Industrial Control Network
1
作者 Qiang Fu JunWang +1 位作者 Changfu Si Jiawei Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期329-349,共21页
As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be... As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network. 展开更多
关键词 Key nodes dynamic model industrial control network SIMULATION
在线阅读 下载PDF
A New Intrusion Detection Algorithm AE-3WD for Industrial Control Network
2
作者 Yongzhong Li Cong Li +1 位作者 Yuheng Li Shipeng Zhang 《Journal of New Media》 2022年第4期205-217,共13页
In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology o... In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection. 展开更多
关键词 industrial control network security intrusion detection deep learning AutoEncoder three-way decision
在线阅读 下载PDF
Adaptive Power Control for mutual Interference Avoidance in Industrial Internet-of-Things 被引量:1
3
作者 ZHENG Tao QIN Yajuan +1 位作者 ZHANG Hongke KUO Syyen 《China Communications》 SCIE CSCD 2016年第S1期124-131,共8页
With the vigorous development of the Internet of Things and 5G technology, such as machine-to-machine and device-todevice, all kinds of data transmission including environmental monitoring and equipment control streng... With the vigorous development of the Internet of Things and 5G technology, such as machine-to-machine and device-todevice, all kinds of data transmission including environmental monitoring and equipment control strengthens the key role of wireless sensor networks in the large-scale wireless communication system. However, especially in the complex industrial wireless applications, the low utilization efficiency of the limited wireless radio resource enhances the coexistence problem between heterogeneous networks. In this paper, from the severe mutual interference point of view, a mathematical model regarding cumulative interferences in the industrial wireless sensor networks is described. Then, from the perspective of mutual interference avoidance, an adaptive power control scheme is proposed in order to handle the normal communication needs on both the primary link and the secondary link. At last, nonlinear programming is taken to solve the corresponding optimization problem. Some typical analyses are given to verify the effectiveness of the proposed scheme on optimizing the tradeoff between the system throughput and energy consumption. Especially, the energy-efficiency of the novel scheme for Industrial Internet of Things is also analysed. Results show that the proposed power control is efficient. The throughput could be enhanced and the energy consumption could be reduced with the guarantee of mutual interference avoidance. 展开更多
关键词 industrial WIRELESS SENSOR networkS optimization power control mutual INTERFERENCE
在线阅读 下载PDF
Identifying Industrial Control Equipment Based on Rule Matching and Machine Learning 被引量:1
4
作者 Yuhao Wang Yuying Li +1 位作者 Yanbin Sun Yu Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期577-605,共29页
To identify industrial control equipment is often a key step in network mapping,categorizing network resources,and attack defense.For example,if vulnerable equipment or devices can be discovered in advance and the att... To identify industrial control equipment is often a key step in network mapping,categorizing network resources,and attack defense.For example,if vulnerable equipment or devices can be discovered in advance and the attack path canbe cut off,security threats canbe effectively avoided and the stable operationof the Internet canbe ensured.The existing rule-matching method for equipment identification has limitations such as relying on experience and low scalability.This paper proposes an industrial control device identification method based on PCA-Adaboost,which integrates rule matching and machine learning.We first build a rule base from network data collection and then use single andmulti-protocol rule-matchingmethods to identify the type of industrial control devices.Finally,we utilize PCA-Adaboost to identify unlabeled data.The experimental results show that the recognition rate of this method is better than that of the traditional Nmap device recognitionmethod and the device recognition accuracy rate reaches 99%.The evaluation effect of the test data set is significantly enhanced. 展开更多
关键词 network mapping network resource industrial control equipment IDENTIFICATION
在线阅读 下载PDF
Wireless Fault-Tolerant Controllers in Cascaded Industrial Workcells Using Wi-Fi and Ethernet
5
作者 Tarek K. Refaat Ramez M. Daoud Hassanein H. Amer 《Intelligent Control and Automation》 2013年第4期349-355,共7页
A Wireless Networked Control System using 802.11b is used to model fault-tolerance at the controller level of an industrial workcell. The fault-tolerance study in this paper presents the cascading of two independent w... A Wireless Networked Control System using 802.11b is used to model fault-tolerance at the controller level of an industrial workcell. The fault-tolerance study in this paper presents the cascading of two independent workcells where each controller must be able to handle the load of both cells in case of failure of the other one. The intercommunication is completely wireless between the cells and this feature is investigated. The model incorporates unmodified 802.11b and 802.11g for communication. Sensors send sampled data to both controllers and the controllers to exchange a watchdog. The fault-free and faulty models are both simulated using OPNET Network Modeler. External interference on the critical intercommunication link is also investigated. Results of simulations are presented based on a 95% confidence analysis, guaranteeing correct system performance. 展开更多
关键词 Fault Tolerance networkED control Systems (NCS) industrial Informatics WI-FI ETHERNET
在线阅读 下载PDF
Time-stamped predictive functional control for networked control systems with random delays
6
作者 张奇智 张卫东 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期149-152,共4页
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is... The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance. 展开更多
关键词 networked control systems random delays predictive functional control industrial Ethernet
在线阅读 下载PDF
Cloud control for IIoT in a cloud-edge environment 被引量:1
7
作者 YAN Ce XIA Yuanqing +1 位作者 YANG Hongjiu ZHAN Yufeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1013-1027,共15页
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for... The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms. 展开更多
关键词 5G and time sensitive network(TSN) industrial Internet of Things(IIoT)workflow transmission control protocol(TCP)flows control cloud edge collaboration multi-objective optimal scheduling
在线阅读 下载PDF
CAGCN:Centrality-Aware Graph Convolution Network for Anomaly Detection in Industrial Control Systems
8
作者 Jun Yang Yi-Qiang Sheng +1 位作者 Jin-Lin Wang Hong Ni 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第4期967-983,共17页
In industrial control systems,the utilization of deep learning based methods achieves improvements for anomaly detection.However,most current methods ignore the association of inner components in industrial control sy... In industrial control systems,the utilization of deep learning based methods achieves improvements for anomaly detection.However,most current methods ignore the association of inner components in industrial control systems.In industrial control systems,an anomaly component may affect the neighboring components;therefore,the connective relationship can help us to detect anomalies effectively.In this paper,we propose a centrality-aware graph convolution network(CAGCN)for anomaly detection in industrial control systems.Unlike the traditional graph convolution network(GCN)model,we utilize the concept of centrality to enhance the ability of graph convolution networks to deal with the inner relationship in industrial control systems.Our experiments show that compared with GCN,our CAGCN has a better ability to utilize this relationship between components in industrial control systems.The performances of the model are evaluated on the Secure Water Treatment(SWaT)dataset and the Water Distribution(WADI)dataset,the two most common industrial control systems datasets in the field of industrial anomaly detection.The experimental results show that our CAGCN achieves better results on precision,recall,and F1 score than the state-of-the-art methods. 展开更多
关键词 graph convolution network(GCN) data mining network centrality anomaly detection industrial control system
原文传递
Human Observation-Inspired Universal Image Acquisition Paradigm Integrating Multi-Objective Motion Planning and Control for Robotics
9
作者 Haotian Liu Yuchuang Tong Zhengtao Zhang 《IEEE/CAA Journal of Automatica Sinica》 CSCD 2024年第12期2463-2475,共13页
Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encounter... Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encountering difficulties with diverse industrial structures lacking standardized computer-aided design(CAD)models or in instances of deformation.Inspired by the multidimensional observation of humans,our study introduces a universal image acquisition paradigm tailored for robotics,seamlessly integrating multi-objective optimization trajectory planning and control scheme to harness measured point clouds for versatile,efficient,and highly accurate image acquisition across diverse structures and scenarios.Specifically,we introduce an energybased adaptive trajectory optimization(EBATO)method that combines deformation and deviation with dual-threshold optimization and adaptive weight adjustment to improve the smoothness and accuracy of imaging trajectory and posture.Additionally,a multi-optimization control scheme based on a meta-heuristic beetle antennal olfactory recurrent neural network(BAORNN)is proposed to track the imaging trajectory while addressing posture,obstacle avoidance,and physical constraints in industrial scenarios.Simulations,real-world experiments,and comparisons demonstrate the effectiveness and practicality of the proposed paradigm. 展开更多
关键词 industrial robotics human observation-inspired meta-heuristic recurrent neural network motion planning and control universal image acquisition
在线阅读 下载PDF
工业物联网智能感知-传输-控制融合:关键技术与未来展望
10
作者 张明强 马晓聪 +5 位作者 杨雅娟 李东阳 李腆腆 王雷雨 张海霞 袁东风 《电子与信息学报》 北大核心 2025年第10期3410-3425,共16页
大规模工业物联网设备的高效互联互通与智能管控是我国制造业数字化、网络化、智能化转型升级和高质量发展的关键。由于通信、计算和网络资源受限,传输环境复杂,感知、传输和控制系统分离设计,传统工业网络面临感知传输效率低、异构系... 大规模工业物联网设备的高效互联互通与智能管控是我国制造业数字化、网络化、智能化转型升级和高质量发展的关键。由于通信、计算和网络资源受限,传输环境复杂,感知、传输和控制系统分离设计,传统工业网络面临感知传输效率低、异构系统互操作性差和难以高效协同的严峻挑战。首先,该文调研并总结了工业物联网发展的核心需求与瓶颈问题,其次,重点聚焦智能感传控融合的工业网络架构、工业物联网智能感知方法、认知智能驱动的工业语义通信以及边缘智能感知-高效传输-最优控制联合设计等关键技术问题,讨论了工业物联网智能感知-传输-控制融合的研究进展,最后总结了工业大模型与工业智能体、工业5.0、工业跨模态协同交互和工业数字孪生等具有重要意义和发展潜力的未来研究方向。 展开更多
关键词 工业物联网 感-传-控融合 工业语义通信 深度压缩感知
在线阅读 下载PDF
基于PLC和触摸屏的电动机控制系统设计 被引量:1
11
作者 吕栋腾 李俊雨 《机械工程与自动化》 2025年第3期164-165,168,共3页
针对传统电动机控制系统接线复杂、操作灵活性不高的问题,设计了一种基于PLC和触摸屏的电动机控制系统。对电动机控制系统进行了优化设计和选型配置,以PLC作为主控制器,基于触摸屏创建友好的人机操作界面,触摸屏与PLC通过工业以太网通信... 针对传统电动机控制系统接线复杂、操作灵活性不高的问题,设计了一种基于PLC和触摸屏的电动机控制系统。对电动机控制系统进行了优化设计和选型配置,以PLC作为主控制器,基于触摸屏创建友好的人机操作界面,触摸屏与PLC通过工业以太网通信,对电动机运行可实现按权限分级控制。对该系统进行了综合调试,结果表明其运行稳定可靠,满足实际生产需求。 展开更多
关键词 电动机控制系统 PLC 触摸屏 工业网络
在线阅读 下载PDF
飞机总装的现场级工业网络系统:架构、关键技术及应用
12
作者 关新平 温晓婧 +2 位作者 金天恺 王淑玲 陈彩莲 《自动化学报》 北大核心 2025年第10期2147-2162,共16页
面对复杂系统装配对高精度、高时效协同的迫切需求,飞机总装制造亟需构建具备感知−传输−控制一体化能力的现场级工业网络系统.为此,本文率先建立现场级网络控制系统容量模型,提出双向融合−协同管控的工业互联网新型架构.围绕感知、传输... 面对复杂系统装配对高精度、高时效协同的迫切需求,飞机总装制造亟需构建具备感知−传输−控制一体化能力的现场级工业网络系统.为此,本文率先建立现场级网络控制系统容量模型,提出双向融合−协同管控的工业互联网新型架构.围绕感知、传输、计算与控制的全链条任务闭环,系统构建多维时效性综合评价指标体系,深入探索多域异构资源的联合调度与协同优化机制.最后,面向飞机总装过程中活动面动态测量与多工序协同优化,设计并实现高保真数字孪生验证平台,有效支撑了理论模型、控制策略与实际部署之间的闭环映射. 展开更多
关键词 现场级工业网络系统 感知−传输−控制一体化 系统容量 综合指标 联合设计
在线阅读 下载PDF
多尺度特征深度学习的未知工控协议分类方法
13
作者 李新春 杜昕宜 +3 位作者 许驰 李琳 张蕾 张鑫 《信息与控制》 北大核心 2025年第2期241-250,共10页
工控协议种类多、规范未知、分类难是实现工控系统互联互通、保障信息安全所面临的核心难题。为此,提出了一种多尺度特征深度学习的未知工控协议分类方法。首先,考虑工控协议头部字段关键信息密集的特点,提出了字节与半字节相结合的多... 工控协议种类多、规范未知、分类难是实现工控系统互联互通、保障信息安全所面临的核心难题。为此,提出了一种多尺度特征深度学习的未知工控协议分类方法。首先,考虑工控协议头部字段关键信息密集的特点,提出了字节与半字节相结合的多尺度工控协议特征提取方法,实现无先验知识情况下的特征提取。进一步,利用头部字段中特征字节不一致的特性,提出特征自动标记方法,动态更新协议特征集合。在此基础上,设计了具备堆叠门控循环单元的1维卷积神经网络,提出了深度学习分类方法,保障协议分类的实时性。在公开数据集上的对比实验表明所题方法的准确率和精度均可达到99.5%以上。 展开更多
关键词 工控协议 特征提取 自动标记 深度学习 卷积神经网络 堆叠门控循环单元
原文传递
制造业智能化转型中AI应用的风险传播机制与控制研究——AI能力的双面效应
14
作者 谢卫红 喻娟 +2 位作者 陈淑敏 李忠顺 赵修仪 《工业技术经济》 北大核心 2025年第10期109-116,共8页
在制造业智能化转型中,人工智能(AI)技术的应用提高了效率但也带来了风险。现有研究缺乏对复杂的制造网络动态演化及AI双向调节作用的系统分析。本文整合复杂网络与元胞自动机方法,构建动态风险传导模型,量化AI能力对风险传播和恢复的... 在制造业智能化转型中,人工智能(AI)技术的应用提高了效率但也带来了风险。现有研究缺乏对复杂的制造网络动态演化及AI双向调节作用的系统分析。本文整合复杂网络与元胞自动机方法,构建动态风险传导模型,量化AI能力对风险传播和恢复的双面效应,并通过特斯拉、西门子、富士康等案例验证策略有效性。研究发现,AI能力通过增强节点交互效率加速风险传播,同时通过智能优化提升系统恢复效率,形成“传播加速-恢复增强”的动态平衡。研究还发现,运行状态特征对风险控制的影响超过了网络结构特征,AI能力可以通过优化运行状态的稳定性来降低风险。在高AI能力的条件下,采取针对性策略的风险显著低于随机策略。研究为制造业提供了平衡AI创新与风险管控的量化模型和实践路径,建议重点提升关键节点AI韧性、实施差异化网络保护,并建立跨组织风险协同治理体系。 展开更多
关键词 制造业智能化转型 人工智能 风险传播与控制 元胞自动机 复杂网络 节点交互效率 智能优化 针对性策略
在线阅读 下载PDF
AI使能的5G-A与星闪短距融合工业无线智联网络架构与关键技术
15
作者 刘玲 周一青 +2 位作者 时宁哲 袁文昊 石晶林 《信息通信技术与政策》 2025年第11期2-9,共8页
面向工业4.0数字化、网络化、智能化发展需求,工业网络正在经历无线化和智能化的升级。星闪是我国主导推动的新一代无线短距通信的星闪短距技术标准,有望与5G-Advanced(5G-A)融合为工业网络提供深度覆盖与智能化服务。基于人工智能使能... 面向工业4.0数字化、网络化、智能化发展需求,工业网络正在经历无线化和智能化的升级。星闪是我国主导推动的新一代无线短距通信的星闪短距技术标准,有望与5G-Advanced(5G-A)融合为工业网络提供深度覆盖与智能化服务。基于人工智能使能为特征,提出了以5G-A和星闪短距融合为基础的端边云协同工业无线智联网络架构,并结合工业场景特点分析了其中的关键技术和亟待进一步研究的问题。 展开更多
关键词 工业无线智联网络 星闪 5G-A 通感智控融合
在线阅读 下载PDF
基于Tomek link算法的工控网络恶意入侵分层检测
16
作者 曹红艳 王路路 孔富城 《电子设计工程》 2025年第11期77-80,85,共5页
在工控网络数据中,正常数据占比通常高于恶意入侵数据,这种数据不平衡会使得模型在训练过程中对少数类(恶意入侵数据)的特征学习不足,导致覆盖指数大幅度下降。对此,研究了基于Tomek link算法的工控网络恶意入侵分层检测。采用Tomek lin... 在工控网络数据中,正常数据占比通常高于恶意入侵数据,这种数据不平衡会使得模型在训练过程中对少数类(恶意入侵数据)的特征学习不足,导致覆盖指数大幅度下降。对此,研究了基于Tomek link算法的工控网络恶意入侵分层检测。采用Tomek link对工控网络数据进行预处理,删除其中的多数类样本以缓解数据不平衡问题。将其输入到双向生成对抗网络(Bidirectional Generative Adversarial Network,BiGAN)模型中进行恶意入侵分层检测,实现了工控网络靶场平台域的恶意入侵数据检测。实验测试结果表明,设计方法恶意检测攻击类型覆盖指数大幅提升至96.5%,在不同网络环境和攻击场景下的检测准确率始终高于90%,具有较好的稳定性和适应性,能够有效检测工控网络中的恶意入侵行为。 展开更多
关键词 Tomek link 双向生成对抗网络 工控网络 恶意入侵检测
在线阅读 下载PDF
基于神经网络算法的工业炉炉温控制系统研究
17
作者 高海英 《工业加热》 2025年第1期24-26,35,共4页
准确控制对于确保产品质量、提高生产效率以及节约能源具有重要意义。随着科技的不断发展,神经网络算法作为一种强大的计算工具,在工业炉炉温控制系统中得到了广泛应用。神经网络算法以其模拟人脑神经元网络的方式进行计算,能够处理非... 准确控制对于确保产品质量、提高生产效率以及节约能源具有重要意义。随着科技的不断发展,神经网络算法作为一种强大的计算工具,在工业炉炉温控制系统中得到了广泛应用。神经网络算法以其模拟人脑神经元网络的方式进行计算,能够处理非线性、复杂的系统,具有强大的逼近能力和学习能力。在工业炉炉温控制领域,传统控制方法存在难以克服的挑战。因此,引入神经网络算法作为炉温控制系统的智能化手段,成为提高控制性能和适应性的有效途径。以步进式加热炉作为研究对象,讨论其构造及炉温控制难点,介绍神经网络模型及多步预测控制原理及方法,并对步进式加热炉神经网络炉温预测及控制界面设计做出具体介绍,希望能够为工业炉炉温控制系统的智能化提供新的思路和方法。 展开更多
关键词 神经网络算法 工业炉 炉温控制
在线阅读 下载PDF
基于混合生成对抗网络的工控网络协议漏洞挖掘方法
18
作者 丁晓波 杨志 +1 位作者 刘晓峻 赵凌楚 《长江信息通信》 2025年第3期214-216,219,共4页
针对数据特征学习不足、生成时间长、缺乏多样性等问题,提出了一种基于混合生成对抗网络的工控网络协议漏洞挖掘方法,简称Mix-GAN。通过引入Bi-LSTM和自注意力机制优化生成器,能够更准确地捕捉长期依赖关系,从而解决数据特征学习不足的... 针对数据特征学习不足、生成时间长、缺乏多样性等问题,提出了一种基于混合生成对抗网络的工控网络协议漏洞挖掘方法,简称Mix-GAN。通过引入Bi-LSTM和自注意力机制优化生成器,能够更准确地捕捉长期依赖关系,从而解决数据特征学习不足的问题。通过引入Bi-LSTM优化判别器,提升判别器判别真假数据的能力,从而缩短了用例生成时间。此外,设计了新的变异策略来增加测试用例的多样性,以发现更多种类的漏洞。与当前的DMGAN变异方法相比,实验结果表明,该方法在评估数据特征学习能力的TV指标上性能提升了10.01%,在评估漏洞检测能力的AVD指标上提升了24.18%,并缩短了用例生成时间,触发了更多种类的漏洞,从而提升了漏洞挖掘的效率。 展开更多
关键词 漏洞挖掘 工控网络协议 模糊测试 序列生成对抗网络 自注意力机制
在线阅读 下载PDF
基于SEGAN和Open-DNN的工业控制系统入侵威胁检测研究 被引量:2
19
作者 胡智锋 孙峙华 《控制工程》 北大核心 2025年第3期400-408,共9页
针对工业控制系统容易遭受网络入侵威胁,进而影响工业控制系统安全性的问题,提出了一种结合生成对抗网络和深度神经网络的工业控制系统入侵威胁检测算法模型。该模型首先提出了一种样本均衡生成对抗网络,将反向传播神经网络(back propag... 针对工业控制系统容易遭受网络入侵威胁,进而影响工业控制系统安全性的问题,提出了一种结合生成对抗网络和深度神经网络的工业控制系统入侵威胁检测算法模型。该模型首先提出了一种样本均衡生成对抗网络,将反向传播神经网络(back propagation neural network,BPNN)作为分类器对入侵威胁进行分类,并通过蜻蜓优化算法实现对BPNN的改进。然后,结合开集识别和深度神经网络来实现对未知攻击的检测。最后,采用KDD数据集对模型的性能进行测试。实验结果表明,已知攻击的入侵威胁检测模型的准确率能够达到98%,F1值为0.947,召回率为0.975;未知攻击检测模型的精度为0.987,F1值为0.973,证明所提出的工业控制系统入侵威胁检测算法模型具有较高的检测精度,有效保障了工业系统的安全性。 展开更多
关键词 工业控制系统 生成对抗网络 网络入侵检测 深度神经网络 蜻蜓优化算法
原文传递
基于深度学习的水利工控网络流量异常检测方法 被引量:2
20
作者 马剑波 左翔 +2 位作者 丛小飞 叶瑞禄 刘威风 《水利水电技术(中英文)》 北大核心 2025年第4期167-178,共12页
【目的】针对水利工控网络流量数据集不平衡、特征维数多和检测效率低等问题,提出一种结合改进条件生成对抗网络(ICGAN)、深度残差收缩网络(DRSN)、长短期记忆网络(LSTM)的流量异常检测方法。【方法】利用ICGAN构建了网络流量平衡数据集... 【目的】针对水利工控网络流量数据集不平衡、特征维数多和检测效率低等问题,提出一种结合改进条件生成对抗网络(ICGAN)、深度残差收缩网络(DRSN)、长短期记忆网络(LSTM)的流量异常检测方法。【方法】利用ICGAN构建了网络流量平衡数据集,利用DRSN-LSTM混合深度学习模型对网络异常流量数据进行检测,其中DRSN负责提取数据的空间特征,其残差连接可以解决网络退化与过拟合问题,压缩和激励网络可自动为每个特征图分配权重系数以提高检测效果,LSTM负责提取数据的时间特征。【结果】以秦淮河武定门闸站为应用场景对该方法进行测试,结果表明采用ICGAN优化后的数据集训练的各类检测模型,其流量分类精度高于原始数据集。DRSN-LSTM的网络流量异常检测的总体准确率达到了98.76%,其中正常数据分类的P、R和F1值,分别达到了99.22%、99.69%和99.46%,在评价指标上优于比较模型。【结论】融合ICGAN、DRSN和LSTM算法优势的水利工控网络流量异常检测方法,能够有效改善原始数据集中的类别不平衡性问题,提高对异常工控网络流量的检测能力,保障水利工程安全稳定运行。 展开更多
关键词 水利工控 网络流量异常检测 深度学习 条件生成对抗网络 深度残差收缩网络 长短期记忆网络 评价指标
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部