A novel algorithm is presented for supervised inductive learning by integrating a genetic algorithm with hot'tom-up induction process.The hybrid learning algorithm has been implemented in C on a personal computer(...A novel algorithm is presented for supervised inductive learning by integrating a genetic algorithm with hot'tom-up induction process.The hybrid learning algorithm has been implemented in C on a personal computer(386DX/40).The performance of the algorithm has been evaluated by applying it to 11-multiplexer problem and the results show that the algorithm's accuracy is higher than the others[5,12, 13].展开更多
We first put forward the idea of a positive extension matrix (PEM) on paper. Then, an algorithm, AE_ 11, was built with the aid of the PEM. Finally, we made the comparisons of our experimental results and the final re...We first put forward the idea of a positive extension matrix (PEM) on paper. Then, an algorithm, AE_ 11, was built with the aid of the PEM. Finally, we made the comparisons of our experimental results and the final result was fairly satisfying.展开更多
This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the L...This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the LERS inductive learning algorithm, it also introduces a generalized quasi incremental algorithm for learning classification rules from data bases.展开更多
This paper presents a new inductive learning algorithm, HGR (Version 2.0), based on the newly-developed extension matrix theory. The basic idea is to partition the positive examples of a specific class in a given exam...This paper presents a new inductive learning algorithm, HGR (Version 2.0), based on the newly-developed extension matrix theory. The basic idea is to partition the positive examples of a specific class in a given example set into consistent groups, and each group corresponds to a consistent rule which covers all the examples in this group and none of the negative examples. Then a performance comparison of the HGR algorithm with other inductive algorithms, such as C4.5, OC1, HCV and SVM, is given in the paper. The authors not only selected 15 databases from the famous UCI machine learning repository, but also considered a real world problem. Experimental results show that their method achieves higher accuracy and fewer rules as compared with other algorithms.展开更多
A new incremental clustering framework is presented, the basis of which is the induction as inverted deduction. Induction is inherently risky because it is not truth-preserving. If the clustering is considered as an i...A new incremental clustering framework is presented, the basis of which is the induction as inverted deduction. Induction is inherently risky because it is not truth-preserving. If the clustering is considered as an induction process, the key to build a valid clustering is to minimize the risk of clustering. From the viewpoint of modal logic, the clustering can be described as Kripke frames and Kripke models which are reflexive and symmetric. Based on the theory of modal logic, its properties can be described by system B in syntax. Thus, the risk of clustering can be calculated by the deduction relation of system B and proximity induction theorem described. Since the new proposed framework imposes no additional restrictive conditions of clustering algorithm, it is therefore a universal framework. An incremental clustering algorithm can be easily constructed by this framework from any given nonincremental clustering algorithm. The experiments show that the lower the a priori risk is, the more effective this framework is. It can be demonstrated that this framework is generally valid.展开更多
In today's world of excessive development in technologies, sustainability and adaptability of computer applications is a challenge, and future prediction became significant. Therefore, strong artificial intelligence ...In today's world of excessive development in technologies, sustainability and adaptability of computer applications is a challenge, and future prediction became significant. Therefore, strong artificial intelligence (AI) became important and, thus, statistical machine learning (ML) methods were applied to serve it. These methods are very difficult to understand, and they predict the future without showing how. However, understanding of how machines make their decision is also important, especially in information system domain. Consequently, incremental covering algorithms (CA) can be used to produce simple rules to make difficult decisions. Nevertheless, even though using simple CA as the base of strong AI agent would be a novel idea but doing so with the methods available in CA is not possible. It was found that having to accurately update the discovered rules based on new information in CA is a challenge and needs extra attention. In specific, incomplete data with missing classes is inappropriately considered, whereby the speed and data size was also a concern, and future none existing classes were neglected. Consequently, this paper will introduce a novel algorithm called RULES-IT, in order to solve the problems of incremental CA and introduce it into strong AI. This algorithm is the first incremental algorithm in its family, and CA as a whole, that transfer rules of different domains to improve the performance, generalize the induction, take advantage of past experience in different domain, and make the learner more intelligent. It is also the first to introduce intelligent aspectsinto incremental CA, including consciousness, subjective emotions, awareness, and adjustment. Furthermore, all decisions made can be understood due to the simple representation of repository as rules. Finally, RULES-IT performance will be benchmarked with six different methods and compared with its predecessors to see the effect of transferring rules in the learning process, and to prove how RULES-IT actually solved the shortcoming of current incremental CA in addition to its improvement in the total performance.展开更多
This paper presents a new sensorless vector controlled induction motor drive robust against rotor resistance variation. Indeed, the speed and rotor resistance are estimated using extended Kalman filter (EKF). Then, ...This paper presents a new sensorless vector controlled induction motor drive robust against rotor resistance variation. Indeed, the speed and rotor resistance are estimated using extended Kalman filter (EKF). Then, we introduce a new fuzzy logic speed controller based on learning by minimizing cost function. This strategy is based on a topology control self-organized and an algorithm for modifying the knowledge base of fuzzy corrector. The learning mechanism addresses the con- sequences of corrector rules, which are modified according to the comparison between the current speed of machine and an output signal or a desired trajectory. Thus, fuzzy associative memory is constructed to meet the criteria imposed in problems either control or pursuit. The consequent algorithm updating consists of a regulator mechanism allowing a fast and robust learning without unnecessarily compromising the control signal and steady- state performance. The performance of this new strategy is satisfactory, even in the presence of noise or when there are variations in the parameters of induction motor drive.展开更多
In this paper, we present reduction algorithms based on the principle of Skowron's discernibility matrix - the ordered attributes method. The completeness of the algorithms for Pawlak reduct and the uniqueness for...In this paper, we present reduction algorithms based on the principle of Skowron's discernibility matrix - the ordered attributes method. The completeness of the algorithms for Pawlak reduct and the uniqueness for a given order of the attributes are proved. Since a discernibility matrix requires the size of the memory of U2, U is a universe of objects, it would be impossible to apply these algorithms directly to a massive object set. In order to solve the problem, a so-called quasi-discernibility matrix and two reduction algorithms are proposed. Although the proposed algorithms are incomplete for Pawlak reduct, their opimal paradigms ensure the completeness as long as they satisfy some conditions. Finally we consider the problem on the reduction of distributive object sets.展开更多
This study reports the development, piloting and initial validation of a test measuring language analytic ability - one foreign language aptitude component for Chinese learners of foreign languages (FL). A test with...This study reports the development, piloting and initial validation of a test measuring language analytic ability - one foreign language aptitude component for Chinese learners of foreign languages (FL). A test with 50 items was constructed and administered to 53 third-year English majors. Rasch analyses showed that the subtest of inductive language learning ability was too easy. After removing misfitting items, the reduced grammatical sensitivity subtest showed satisfactory psychometric properties. The Rasch measures of the students' grammatical sensitivity were also found to be correlated significantly with their TEM-4 scores and their English reading grades, thus providing further evidence for the validity of the this subtest.展开更多
The principle of discernibility matrix serves as a tool to discuss and analyze two algorithms of traditional inductive machine learning, AQ11 and ID3. The results are: (1) AQ11 and its family can be completely specifi...The principle of discernibility matrix serves as a tool to discuss and analyze two algorithms of traditional inductive machine learning, AQ11 and ID3. The results are: (1) AQ11 and its family can be completely specified by the principle of discernibility matrix; (2) ID3 can be partly, but not naturally, specified by the principle of discernibility matrix; and (3) The principle of discernibility matrix is employed to analyze Cendrowska sample set, and it shows the weaknesses of knowledge representation style of decision tree in theory.展开更多
文摘A novel algorithm is presented for supervised inductive learning by integrating a genetic algorithm with hot'tom-up induction process.The hybrid learning algorithm has been implemented in C on a personal computer(386DX/40).The performance of the algorithm has been evaluated by applying it to 11-multiplexer problem and the results show that the algorithm's accuracy is higher than the others[5,12, 13].
文摘We first put forward the idea of a positive extension matrix (PEM) on paper. Then, an algorithm, AE_ 11, was built with the aid of the PEM. Finally, we made the comparisons of our experimental results and the final result was fairly satisfying.
文摘This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the LERS inductive learning algorithm, it also introduces a generalized quasi incremental algorithm for learning classification rules from data bases.
文摘This paper presents a new inductive learning algorithm, HGR (Version 2.0), based on the newly-developed extension matrix theory. The basic idea is to partition the positive examples of a specific class in a given example set into consistent groups, and each group corresponds to a consistent rule which covers all the examples in this group and none of the negative examples. Then a performance comparison of the HGR algorithm with other inductive algorithms, such as C4.5, OC1, HCV and SVM, is given in the paper. The authors not only selected 15 databases from the famous UCI machine learning repository, but also considered a real world problem. Experimental results show that their method achieves higher accuracy and fewer rules as compared with other algorithms.
基金supported by the National High-Tech Research and Development Program of China(2006AA12A106).
文摘A new incremental clustering framework is presented, the basis of which is the induction as inverted deduction. Induction is inherently risky because it is not truth-preserving. If the clustering is considered as an induction process, the key to build a valid clustering is to minimize the risk of clustering. From the viewpoint of modal logic, the clustering can be described as Kripke frames and Kripke models which are reflexive and symmetric. Based on the theory of modal logic, its properties can be described by system B in syntax. Thus, the risk of clustering can be calculated by the deduction relation of system B and proximity induction theorem described. Since the new proposed framework imposes no additional restrictive conditions of clustering algorithm, it is therefore a universal framework. An incremental clustering algorithm can be easily constructed by this framework from any given nonincremental clustering algorithm. The experiments show that the lower the a priori risk is, the more effective this framework is. It can be demonstrated that this framework is generally valid.
文摘In today's world of excessive development in technologies, sustainability and adaptability of computer applications is a challenge, and future prediction became significant. Therefore, strong artificial intelligence (AI) became important and, thus, statistical machine learning (ML) methods were applied to serve it. These methods are very difficult to understand, and they predict the future without showing how. However, understanding of how machines make their decision is also important, especially in information system domain. Consequently, incremental covering algorithms (CA) can be used to produce simple rules to make difficult decisions. Nevertheless, even though using simple CA as the base of strong AI agent would be a novel idea but doing so with the methods available in CA is not possible. It was found that having to accurately update the discovered rules based on new information in CA is a challenge and needs extra attention. In specific, incomplete data with missing classes is inappropriately considered, whereby the speed and data size was also a concern, and future none existing classes were neglected. Consequently, this paper will introduce a novel algorithm called RULES-IT, in order to solve the problems of incremental CA and introduce it into strong AI. This algorithm is the first incremental algorithm in its family, and CA as a whole, that transfer rules of different domains to improve the performance, generalize the induction, take advantage of past experience in different domain, and make the learner more intelligent. It is also the first to introduce intelligent aspectsinto incremental CA, including consciousness, subjective emotions, awareness, and adjustment. Furthermore, all decisions made can be understood due to the simple representation of repository as rules. Finally, RULES-IT performance will be benchmarked with six different methods and compared with its predecessors to see the effect of transferring rules in the learning process, and to prove how RULES-IT actually solved the shortcoming of current incremental CA in addition to its improvement in the total performance.
文摘This paper presents a new sensorless vector controlled induction motor drive robust against rotor resistance variation. Indeed, the speed and rotor resistance are estimated using extended Kalman filter (EKF). Then, we introduce a new fuzzy logic speed controller based on learning by minimizing cost function. This strategy is based on a topology control self-organized and an algorithm for modifying the knowledge base of fuzzy corrector. The learning mechanism addresses the con- sequences of corrector rules, which are modified according to the comparison between the current speed of machine and an output signal or a desired trajectory. Thus, fuzzy associative memory is constructed to meet the criteria imposed in problems either control or pursuit. The consequent algorithm updating consists of a regulator mechanism allowing a fast and robust learning without unnecessarily compromising the control signal and steady- state performance. The performance of this new strategy is satisfactory, even in the presence of noise or when there are variations in the parameters of induction motor drive.
文摘In this paper, we present reduction algorithms based on the principle of Skowron's discernibility matrix - the ordered attributes method. The completeness of the algorithms for Pawlak reduct and the uniqueness for a given order of the attributes are proved. Since a discernibility matrix requires the size of the memory of U2, U is a universe of objects, it would be impossible to apply these algorithms directly to a massive object set. In order to solve the problem, a so-called quasi-discernibility matrix and two reduction algorithms are proposed. Although the proposed algorithms are incomplete for Pawlak reduct, their opimal paradigms ensure the completeness as long as they satisfy some conditions. Finally we consider the problem on the reduction of distributive object sets.
基金supported by the Fundamental Research Funds for the Central Universities(105563GK)
文摘This study reports the development, piloting and initial validation of a test measuring language analytic ability - one foreign language aptitude component for Chinese learners of foreign languages (FL). A test with 50 items was constructed and administered to 53 third-year English majors. Rasch analyses showed that the subtest of inductive language learning ability was too easy. After removing misfitting items, the reduced grammatical sensitivity subtest showed satisfactory psychometric properties. The Rasch measures of the students' grammatical sensitivity were also found to be correlated significantly with their TEM-4 scores and their English reading grades, thus providing further evidence for the validity of the this subtest.
基金This research is partly supported by the National '863' High-Tech Programme (No. 863-306-ZT06-07-1)and NKPSF (G1998030508).
文摘The principle of discernibility matrix serves as a tool to discuss and analyze two algorithms of traditional inductive machine learning, AQ11 and ID3. The results are: (1) AQ11 and its family can be completely specified by the principle of discernibility matrix; (2) ID3 can be partly, but not naturally, specified by the principle of discernibility matrix; and (3) The principle of discernibility matrix is employed to analyze Cendrowska sample set, and it shows the weaknesses of knowledge representation style of decision tree in theory.