The explicit expressions for indecomposable representations of nine square-root Lie algebras of vector type, , are obtained on the space of universal enveloping algebra of two-state Heisenberg–Weyl algebra, the invar...The explicit expressions for indecomposable representations of nine square-root Lie algebras of vector type, , are obtained on the space of universal enveloping algebra of two-state Heisenberg–Weyl algebra, the invariant subspaces and the quotient spaces. From Fock representations corresponding to these indecomposable representations, the inhomogeneous boson realizations of are given. The expectation values of in the angular momentum coherent states are calculated as well as the corresponding classical limits.展开更多
Let (Г, I) be the bound quiver of a cyclic quiver whose vertices correspond to the Abelian group ? d . In this paper, we list all indecomposable representations of (θ, I) and give the conditions that those represent...Let (Г, I) be the bound quiver of a cyclic quiver whose vertices correspond to the Abelian group ? d . In this paper, we list all indecomposable representations of (θ, I) and give the conditions that those representations of them can be extended to representations of deformed preprojective algebra Пλ(Г, I). It is shown that those representations given by extending indecomposable representations of (Г, I) are all simple representations of Пλ(Г, I). Therefore, it is concluded that all simple representations of restricted quantum group ū q (sl 2) are realized in terms of deformed preprojective algebra.展开更多
In the Ringel-Hall algebra of Dynkin type,the set of all commutator relations between the isoclasses of indecomposable representations forms a minimal Grobner-Shirshov basis and the set of the corresponding irreducibl...In the Ringel-Hall algebra of Dynkin type,the set of all commutator relations between the isoclasses of indecomposable representations forms a minimal Grobner-Shirshov basis and the set of the corresponding irreducible elements forms a PBW-type basis of the Ringel-Hall algebra.We aim to generalize this result to the reduced Drinfeld double Hall algebra of type A_(n).First,we compute a minimal Grobner-Shirshov basis for the reduced Drinfeld double Hall algebra of type An by proving that all possible compositions between the commutator relations are trivial.Then,by taking the corresponding irreducible monomials,we construct a PBW-type basis for the reduced Drinfeld double Hall algebra of type A_(n).展开更多
文摘The explicit expressions for indecomposable representations of nine square-root Lie algebras of vector type, , are obtained on the space of universal enveloping algebra of two-state Heisenberg–Weyl algebra, the invariant subspaces and the quotient spaces. From Fock representations corresponding to these indecomposable representations, the inhomogeneous boson realizations of are given. The expectation values of in the angular momentum coherent states are calculated as well as the corresponding classical limits.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10671016, 10771014)the Beijing Natural Science Foundation (Grant No. 1062003)Science and Technology Program of Beijing Education Committee (Grant No. KM200710005013)
文摘Let (Г, I) be the bound quiver of a cyclic quiver whose vertices correspond to the Abelian group ? d . In this paper, we list all indecomposable representations of (θ, I) and give the conditions that those representations of them can be extended to representations of deformed preprojective algebra Пλ(Г, I). It is shown that those representations given by extending indecomposable representations of (Г, I) are all simple representations of Пλ(Г, I). Therefore, it is concluded that all simple representations of restricted quantum group ū q (sl 2) are realized in terms of deformed preprojective algebra.
基金Supported by National Natural Science Foundation of China(Grant No.11861061).
文摘In the Ringel-Hall algebra of Dynkin type,the set of all commutator relations between the isoclasses of indecomposable representations forms a minimal Grobner-Shirshov basis and the set of the corresponding irreducible elements forms a PBW-type basis of the Ringel-Hall algebra.We aim to generalize this result to the reduced Drinfeld double Hall algebra of type A_(n).First,we compute a minimal Grobner-Shirshov basis for the reduced Drinfeld double Hall algebra of type An by proving that all possible compositions between the commutator relations are trivial.Then,by taking the corresponding irreducible monomials,we construct a PBW-type basis for the reduced Drinfeld double Hall algebra of type A_(n).