期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
New insights into combined thermal and vibration softening of magnesium alloy in rotational vibration assisted incremental sheet forming
1
作者 Hui Zhu Xiaohan Zeng +1 位作者 Hui Long João Quinta da Fonseca 《Journal of Magnesium and Alloys》 2025年第12期6021-6046,共26页
With the generation of both localised thermal and vibration in incremental sheet forming(ISF)by novel tool designs,rotational vibration assisted ISF(RV-ISF)can achieve significant force reduction and material softenin... With the generation of both localised thermal and vibration in incremental sheet forming(ISF)by novel tool designs,rotational vibration assisted ISF(RV-ISF)can achieve significant force reduction and material softening.However,the combined thermal and vibration softening in RV-ISF is unclear.By evaluating the similarities and differences of friction stir ISF(FS-ISF)and RV-ISF,this study develops a novel approach to decouple and quantify the thermal and vibration softening effects in RV-ISF of AZ31B-H24,providing new insights into underlying thermal and vibration softening mechanism.Experimental results reveal that in RV-ISF of AZ31B-H24 the thermal softening due to frictional heating dominates with 45∼65%of softening,while the vibration effect only contributes up to 15%of softening,from the conventional ISF,depending on the tool designs and tool rotational speed.The double-offset tool(T2)produces greater vibration softening than the three-groove tool(T3)owing to the higher vibration amplitude of the T2 tool.An increase in tool rotational speed primarily enhances thermal softening with only marginal changes to the vibration effect.Microstructural analysis suggests that with average grain size of 0.94μm at the top layer,RV-ISF with T3 and 3000 rpm is more effective for microstructure refinement than that by FS-ISF,especially on the tool-sheet contact surface,which confirms the occurrence of surface shearing.This refinement is a result of the reduced recrystallisation degree,71.8%at the top bottom layer.Compared with FS-ISF,RV-ISF can lead to not only higher geometrically necessary dislocation density,but also higher fraction of low-angle grain boundaries,indicating that softening mechanism due to localised vibration effect is resulted from the enhanced rearrangement and annihilation of dislocations.These findings contribute to new understanding of the thermal and vibration softening effects in RV-ISF of AZ31B-H24 and offer a theoretical foundation for the tool design and process optimisation. 展开更多
关键词 incremental sheet forming Magnesium alloy Vibration softening Thermal softening Microstructure evolution
在线阅读 下载PDF
A new test method for friction in incremental sheet forming
2
作者 Guang-can YANG Da-wei ZHANG +1 位作者 Chong TIAN Sheng-dun ZHAO 《Transactions of Nonferrous Metals Society of China》 2025年第12期3985-4006,共22页
An analytical model for contact area and contact stress considering the loading history in incremental sheet forming(ISF)was established.Then,by integrating with the directional characteristics of friction force and h... An analytical model for contact area and contact stress considering the loading history in incremental sheet forming(ISF)was established.Then,by integrating with the directional characteristics of friction force and horizontal force in the process,a friction test method reflecting the forming characteristics of ISF was proposed.Friction coefficients during the forming processes of parts with different wall angles were measured under various plane curves,process paths,and lubrication conditions.Furthermore,the accuracy of the analytical model,as well as the measured friction coefficients and their variation trends,was verified through comparative analysis with experimental results,simulation data,and outcomes from other existing models.The results indicate that the influence of the plane curve characteristics and process paths of parts on the friction condition is not significant.Under the lubrication conditions of L-HM46 oil,MoS_(2)grease,graphite powder,and dry friction,the friction coefficient shows a gradually increasing trend.Notably,when the wall angle is≤40°,the friction coefficient remains relatively constant;however,when the wall angle exceeds 40°,the friction coefficient increases progressively. 展开更多
关键词 incremental sheet forming friction test method contact area friction coefficient forming force
在线阅读 下载PDF
Springback prediction for incremental sheet forming based on FEM-PSONN technology 被引量:6
3
作者 韩飞 莫健华 +3 位作者 祁宏伟 龙睿芬 崔晓辉 李中伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1061-1071,共11页
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f... In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model. 展开更多
关键词 incremental sheet forming (ISF) springback prediction finite element method (FEM) artificial neural network (ANN) particle swarm optimization (PSO) algorithm
在线阅读 下载PDF
Experimental and numerical investigation on surface quality for two-point incremental sheet forming with interpolator 被引量:4
4
作者 Xiaoqiang LI Kai HAN +4 位作者 Xu SONG Haibo WANG Dongsheng LI Yanle LI Qing LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2794-2806,共13页
The unsatisfied surface quality seriously impedes the wide application of incremental sheet forming(ISF)in industrial field.As a novel approach,the interpolator method is a promising strategy to enhance the surface qu... The unsatisfied surface quality seriously impedes the wide application of incremental sheet forming(ISF)in industrial field.As a novel approach,the interpolator method is a promising strategy to enhance the surface quality in ISF.However,the mechanism for the improvement of surface quality and the influence of interpolator properties on surface roughness are not well understood.In this paper,the influences of process variables(i.e.tool diameter,step size and thickness of interpolators)on the forming process(e.g.surface roughness,forming force and geometric error)are investigated through a systematic experimental approach of central composite design(CCD)in two-point incremental sheet forming(TPIF).It is obtained that the increase in thickness of interpolators decreases the surface roughness in direction vertical to the tool path while increases the surface roughness in direction horizontal to the tool path.Nevertheless,the combined influence between thickness of interpolators and process parameters(tool diameter and step size)is limited.Meanwhile,the placement of interpolator has little influence on the effective forming force of blank.In addition,the geometric error enlarges with the increase of step size and thickness of interpolator while decreases firstly and then increase with an increase in tool diameter.Finally,the influencing mechanism of the interpolator method on surface quality can be attributed to the decrease of thecontact pressure due to the increase of contact area with the unchanged contact force.Meanwhile,the interpolator method eliminates the sliding friction on the surface of blank due to the stable relative position between the blank and the interpolator. 展开更多
关键词 forming force Geometric error INTERPOLATOR Process parameter Surface quality Two-point incremental sheet forming
原文传递
Numerical simulation and experimental investigation of incremental sheet forming process 被引量:4
5
作者 韩飞 莫健华 《Journal of Central South University of Technology》 EI 2008年第5期581-587,共7页
In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the pr... In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those of experiment. The results of numerical simulations, such as the strain history and distribution, the stress state and distribution, sheet thickness distribution, etc, were discussed in details, and the influences of process parameters on these results were also analyzed. The simulated results of the radial strain and the thickness distribution are in good agreement with experimental results. The simulations reveal that the deformation is localized around the tool and constantly remains close to a plane strain state. With decreasing depth step, increasing tool diameter and wall inclination angle, the axial stress reduces, leading to less thinning and more homogeneous plastic strain and thickness distribution. During ISF, the plastic strain increases stepwise under the action of the tool. Each increase in plastic strain is accompanied by hydrostatic pressure, which explains why obtainable deformation using ISF exceeds the forming limits of conventional sheet forming. 展开更多
关键词 incremental sheet forming (ISF) sheet metal forming numerical simulation finite element method
在线阅读 下载PDF
A toolpath strategy for improving geometric accuracy in double-sided incremental sheet forming 被引量:2
6
作者 Sattar ULLAH Xiaoqiang LI +3 位作者 Peng XU Yanle LI Kai HAN Dongsheng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期468-479,共12页
The double-sided incremental forming(DSIF)improved the process flexibility compared to other incremental sheet forming(ISF)processes.Despite the flexible nature,it faces the challenge of low geometric precision like I... The double-sided incremental forming(DSIF)improved the process flexibility compared to other incremental sheet forming(ISF)processes.Despite the flexible nature,it faces the challenge of low geometric precision like ISF variants.In this work,two strategies are used to overcome this.First,a novel method is employed to determine the optimal support tool location for improving geometric precision.In this method,the toolpath oriented the tools to each other systematically in the circumferential direction.Besides,it squeezed the sheet by the same amount at the point of interest.The impacts of various support tool positions in the circumferential direction are evaluated for geometric precision.The results demonstrate that the support tool should support the master tool within 10°to its local normal in the circumferential direction to improve the geometric accuracy.Second,a two-stage process reduced the geometric error of the part by incrementally accommodating the springback error by artificially increasing the step size for the second stage.With the optimal support tool position and two-stage DSIF,the geometric precision of the part has improved significantly.The proposed method is compared to the best DSIF toolpath strategies for geometric accuracy,surface roughness,forming time,and sheet thickness fluctuations using grey relational analysis(GRA).It outperforms the other toolpath strategies including single-stage DSIF,accumulative double-sided incremental forming(ADSIF),and two-stage mixed double sided incre-mental forming(MDSIF).Our approach can improve geometric precision in complex parts by successfully employing the support tool and managing the springback incrementally. 展开更多
关键词 incremental sheet forming double-sided incremental forming geometric accuracy SPRINGBACK grey relational analyses
原文传递
Method of closed loop springback compensation for incremental sheet forming process 被引量:1
7
作者 韩飞 莫健华 +1 位作者 龚攀 李敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1509-1517,共9页
The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the ... The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly. 展开更多
关键词 incremental sheet forming spingback numerical simulation closed loop control
在线阅读 下载PDF
A novel micro-rolling&incremental sheet forming hybrid process:Deformation behavior and microstructure evolution
8
作者 Yanle LI Feifei LIU +3 位作者 Hao YUAN Xiaoqiang LI Jianfeng LI Guoqun ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期603-622,共20页
Thin-walled metal parts with functional micro-featured surface have broad application prospects in the fields of resistance reduction,noise reduction,etc.In this study,a novel micro-rolling&incremental sheet formi... Thin-walled metal parts with functional micro-featured surface have broad application prospects in the fields of resistance reduction,noise reduction,etc.In this study,a novel micro-rolling&incremental sheet forming hybrid process(μR-ISF)is proposed to fabricate thin-walled metal parts with microgroove arrays.An analytical model which relates the rolling force and microgroove depth in the micro-rolling stage was first established.Then,the formation mechanism of microgroove morphology during both micro-rolling stage and macro-shape forming stage are investigated.After the micro-grooved sheet being incrementally formed,a significant reduction(between 21%to nearly 60%)is occurred in the depth of both transverse and longitudinal grooves compared to the flat sheet.Meanwhile,the width of transverse grooves decreases slightly by about 10%on average,while the width of longitudinal microgrooves increases significantly by more than 30%on average.After micro-rolling,85°{102}tensile twins appear on the micro-grooved sheet and the percentage of 65°{112}compressive twins increases.After incremental forming,the percentage of low-angle grain boundaries and the density of geometrically necessary dislocations in the formed part increase significantly,and the grain size distribution becomes more uniform.The present work provides a new strategy for the fabrication of 3D metal thin-walled components with surface micro-features. 展开更多
关键词 incremental sheet forming Microgrooves rolling Surface micromachining Groove size Microstructural evolution
原文传递
Studying Formability Limits By Combining Conventional and Incremental Sheet Forming Process
9
作者 Fabio Andre Lora Daniel Fritzen +1 位作者 Ricardo Alves de Sousa Lirio Schaffer 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期78-89,共12页
In this work it is assessed the potential of combining conventional and incremental sheet forming processes in a same sheet of metal.This so-called hybrid forming approach is performed through the manufacture of a pre... In this work it is assessed the potential of combining conventional and incremental sheet forming processes in a same sheet of metal.This so-called hybrid forming approach is performed through the manufacture of a pre-forming by conventional forming,followed by incremental sheet forming.The main objective is analyzing strain evolution.The pre-forming induced in the conventional forming stage will determine the strain paths,directly influencing the strains produced by the incremental process.To conduct the study,in the conventional processes,strains were imposed in three different ways with distinct true strains.At the incremental stage,the pyramid strategy was adopted with different wall slopes.From the experiments,the true strains and the final geometries were analyzed.Numerical simulation was also employed for the sake of comparison and correlation with the measured data.It could be observed that single-stretch pre-strain was directly proportional to the maximum incremental strains achieved,whereas samples subjected to biaxial pre-strain influenced the formability according to the degree of pre-strain applied.Pre-strain driven by the prior deep-drawing operation did not result,in this particular geometry,in increased formability. 展开更多
关键词 Hybrid forming process incremental sheet forming Strain paths Numerical simulation
在线阅读 下载PDF
Formation mechanism and modeling of surface waviness in incremental sheet forming
10
作者 Kai HAN Xiaoqiang LI +4 位作者 Yanle LI Peng XU Yong LI Qing LI Dongsheng LI 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第2期129-143,共15页
mproving and controlling surface quality has always been a challenge for incremental sheet forming (ISF), whereas the generation mechanism of waviness surface is still unknown, which impedes the widely application of ... mproving and controlling surface quality has always been a challenge for incremental sheet forming (ISF), whereas the generation mechanism of waviness surface is still unknown, which impedes the widely application of ISF in the industrial field. In this paper, the formation mechanism and the prediction of waviness are both investigated through experiments, numerical simulation, and theoretical analysis. Based on a verified finite element model, the waviness topography is predicted numerically for the first time, and its generation is attributed to the residual bending deformation through deformation history analysis. For more efficient engineering application, a theoretical model for waviness height is proposed based on the generation mechanism, using a modified strain function considering deformation modes. This work is favorable for the perfection of formation mechanism and control of surface quality in ISF. 展开更多
关键词 surface waviness incremental sheet forming numerical simulation formation mechanism deformation history
原文传递
DEFORMATION ANALYSIS OF SHEET METAL SINGLE-POINT INCREMENTAL FORMING BY FINITE ELEMENT METHOD SIMULATION 被引量:3
11
作者 MA Linwei MO Jianhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期31-35,共5页
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a... Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger. 展开更多
关键词 sheet metal incremental forming DEFORMATION Finite element method(FEM) Numerical simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部