The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the t...The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process.In this work,an incremental multivariable predictive functional control(IMPFC) algorithm was proposed with less online computation,great precision and fast response.An incremental transfer function matrix model was set up through the step-response data,and predictive outputs were deduced with the theory of single-value optimization.The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm,and thereby making the control variable smoother.The predictive output error and future set-point were approximated by a polynomial,which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory.Then,the design of incremental multivariable predictive functional control was studied.Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process.展开更多
This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCon...This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCond-PSOMPC).The purpose of the suggested method is to create as much power as feasible from a PV system during environmental changes,then transfer it to the power grid.To accomplish this,a hybrid combination of incremental conductance(IncCond)and particle swarm optimization(PSO)is proposed to locate maximum power,followed by model predictive control(MPC)to track maximum power and control the boost converter to achieve high performance regardless of parameter variations.A two-level inverter,likewise,controlled by Model Predictive Control,is employed to inject the PV power generated.In this application,the MPC is based on minimizing the difference between the reference and prediction powers,which is computed to select the switching state of the inverter.The proposed system is simulated and evaluated in a variety of dynamic conditions using Matlab/Simulink.Results reveal that the proposed control mechanism is effective at tracking the maximum power point(MPP)with fewer power oscillations.展开更多
基金Project(61203021)supported by the National Natural Science Foundation of ChinaProject(2011216011)supported by the Scientific and Technological Program of Liaoning Province,China+2 种基金Project(2013020024)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2012BAF05B00)supported by the National Science and Technology Support Program,ChinaProject(LJQ2015061)supported by the Program for Liaoning Excellent Talents in Universities,China
文摘The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process.In this work,an incremental multivariable predictive functional control(IMPFC) algorithm was proposed with less online computation,great precision and fast response.An incremental transfer function matrix model was set up through the step-response data,and predictive outputs were deduced with the theory of single-value optimization.The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm,and thereby making the control variable smoother.The predictive output error and future set-point were approximated by a polynomial,which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory.Then,the design of incremental multivariable predictive functional control was studied.Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process.
文摘This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCond-PSOMPC).The purpose of the suggested method is to create as much power as feasible from a PV system during environmental changes,then transfer it to the power grid.To accomplish this,a hybrid combination of incremental conductance(IncCond)and particle swarm optimization(PSO)is proposed to locate maximum power,followed by model predictive control(MPC)to track maximum power and control the boost converter to achieve high performance regardless of parameter variations.A two-level inverter,likewise,controlled by Model Predictive Control,is employed to inject the PV power generated.In this application,the MPC is based on minimizing the difference between the reference and prediction powers,which is computed to select the switching state of the inverter.The proposed system is simulated and evaluated in a variety of dynamic conditions using Matlab/Simulink.Results reveal that the proposed control mechanism is effective at tracking the maximum power point(MPP)with fewer power oscillations.