期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
1
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
在线阅读 下载PDF
Multivariable Dynamic Modeling for Molten Iron Quality Using Incremental Random Vector Functional-link Networks 被引量:4
2
作者 Li ZHANG Ping ZHOU +2 位作者 He-da SONG Meng YUAN Tian-you CHAI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第11期1151-1159,共9页
Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p... Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods. 展开更多
关键词 molten iron quality multivariable incremental random vector functional-link network blast furnace iron-making data-driven modeling principal component analysis
原文传递
Evaluation of Green Development Level of Electric Energy in Distribution Network Based on Multilevel Fuzzy Comprehensive Evaluation
3
作者 Zhongfu Tan Jing Wang +1 位作者 Caixia Tan Gejirifu De 《Energy Engineering》 EI 2022年第1期331-357,共27页
At present,there are few studies on the comprehensive evaluation of green power grid development in China,and all aspects of green power grid need to be evaluated.Therefore,this paper studies the green development lev... At present,there are few studies on the comprehensive evaluation of green power grid development in China,and all aspects of green power grid need to be evaluated.Therefore,this paper studies the green development level of power distribution network.This paper proposes a multi-level fuzzy comprehensive evaluation method,which first needs to classify the influencing factors.Therefore,this paper constructs an indicator system for the evaluation of green development of power distribution network from three dimensions.In order to avoid the influence of subjective factors,this paper adopts the model combining analytic hierarchy process and entropy weight method to give weight to indexes.Finally,five typical regions are selected for empirical analysis.The results show that the model established in this paper can reflect the green development level of power distribution network in each region and put forward relevant improvement suggestions for each region. 展开更多
关键词 incremental distribution network fuzzy comprehensive evaluation entropy weight method-analytic hierarchy process green development
在线阅读 下载PDF
L^2(R^d) Approximation Capability of Incremental Constructive Feedforward Neural Networks with Random Hidden Units
4
作者 Jin Ling LONG Zheng Xue LI Dong NAN 《Journal of Mathematical Research and Exposition》 CSCD 2010年第5期799-807,共9页
This paper studies approximation capability to L^2(Rd) functions of incremental constructive feedforward neural networks (FNN) with random hidden units. Two kinds of therelayered feedforward neural networks are co... This paper studies approximation capability to L^2(Rd) functions of incremental constructive feedforward neural networks (FNN) with random hidden units. Two kinds of therelayered feedforward neural networks are considered: radial basis function (RBF) neural networks and translation and dilation invariant (TDI) neural networks. In comparison with conventional methods that existence approach is mainly used in approximation theories for neural networks, we follow a constructive approach to prove that one may simply randomly choose parameters of hidden units and then adjust the weights between the hidden units and the output unit to make the neural network approximate any function in L2 (Rd) to any accuracy. Our result shows given any non-zero activation function g : R+ → R and g(||x||R^d) ∈ L^2(Rd) for RBF hidden units, or any non-zero activation function g(x) ∈ L^2(R^d) for TDI hidden units, the incremental network function fn with randomly generated hidden units converges to any target function in L2 (R^d) with probability one as the number of hidden units n → ∞, if one only properly adjusts the weights between the hidden units and output unit. 展开更多
关键词 APPROXIMATION incremental feedforward neural networks RBF neural networks TDI neural networks random hidden units.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部