For the purpose of carrying out the large deformation finite element analysis of spatial curved beams,the total Lagrangian(TL)and the updated Lagrangian(UL)incremental formulations for arbitrary spatial curved bea...For the purpose of carrying out the large deformation finite element analysis of spatial curved beams,the total Lagrangian(TL)and the updated Lagrangian(UL)incremental formulations for arbitrary spatial curved beam elements are established with displacement vector interpolation,which is improved from component interpolation of the straight beam displacement.A strategy of replacing the actual curve with the isoparametric curve is used to expand the applications of the UL formulation.The examples indicate that the process of establishing the curved beam element is correct,and the accuracy with the curved beam element is obviously higher than that with the straight beam element.Generally,the same level of computational accuracy can be achieved with 1/5 as many curved beam elements as otherwise with straight beam elements.展开更多
A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed ...A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.展开更多
Fashion industry has a complex characteristic for it spans the first, second, and third industries. In addition, the characteristic of creative industry has high value-added for its knowledge outputting, which makes t...Fashion industry has a complex characteristic for it spans the first, second, and third industries. In addition, the characteristic of creative industry has high value-added for its knowledge outputting, which makes the traditional value-added analysis based on supply chain not easy and good enough to interpret its industry value-added features. From the perspective of "products-knowledge" two-dimensional analysis,a fashion industry value chain increment model is built,by simulating the process of "product flow" and "information flow" value-added. The fashion industry value chain increment model provides an effective way for the enterprise strategy formulation and production strategy adjustment.展开更多
基金The Major Research Plan of the National Natural Science Foundation of China(No.90715021)
文摘For the purpose of carrying out the large deformation finite element analysis of spatial curved beams,the total Lagrangian(TL)and the updated Lagrangian(UL)incremental formulations for arbitrary spatial curved beam elements are established with displacement vector interpolation,which is improved from component interpolation of the straight beam displacement.A strategy of replacing the actual curve with the isoparametric curve is used to expand the applications of the UL formulation.The examples indicate that the process of establishing the curved beam element is correct,and the accuracy with the curved beam element is obviously higher than that with the straight beam element.Generally,the same level of computational accuracy can be achieved with 1/5 as many curved beam elements as otherwise with straight beam elements.
基金Project supported by the National Natural Science Foundation of China(No.10172052).
文摘A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.
基金Shanghai University Young Teachers Training Program,China(No.KY01X0322016010)
文摘Fashion industry has a complex characteristic for it spans the first, second, and third industries. In addition, the characteristic of creative industry has high value-added for its knowledge outputting, which makes the traditional value-added analysis based on supply chain not easy and good enough to interpret its industry value-added features. From the perspective of "products-knowledge" two-dimensional analysis,a fashion industry value chain increment model is built,by simulating the process of "product flow" and "information flow" value-added. The fashion industry value chain increment model provides an effective way for the enterprise strategy formulation and production strategy adjustment.