期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进U-Net卷积神经网络的数字图像智能分类方法
被引量:
1
1
作者
梅光
《长江信息通信》
2024年第10期57-59,共3页
环境噪声和干扰可能会对数字图像智能分类方法的性能产生负面影响,导致分类速度慢。为此,研究基于改进U-Net卷积神经网络的数字图像智能分类方法。通过去噪、增强和标准化处理,提高数字图像的质量;利用改进U-Net卷积神经网络提高预处理...
环境噪声和干扰可能会对数字图像智能分类方法的性能产生负面影响,导致分类速度慢。为此,研究基于改进U-Net卷积神经网络的数字图像智能分类方法。通过去噪、增强和标准化处理,提高数字图像的质量;利用改进U-Net卷积神经网络提高预处理后的图像的维度,使网络能够学习到更丰富的图像信息;采用分割算法将图像划分为多个区域,通过关键点精确定位技术,准确识别出图像中的关键特征点;对比待分类图像与已知类别的图像相似度,实现智能分类。实验结果表明:与传统的分类方法相比,新方法在分类速度更快,实际应用价值更高。
展开更多
关键词
改进
u-net
卷积神经网络
数字图像
智能分类
图像分类
在线阅读
下载PDF
职称材料
题名
基于改进U-Net卷积神经网络的数字图像智能分类方法
被引量:
1
1
作者
梅光
机构
南昌大学共青学院
出处
《长江信息通信》
2024年第10期57-59,共3页
基金
江西省教育厅科学技术研究项目——基于卷积神经网络的肝肿瘤图像分类研究,项目计划编号:GJJ2203816的研究成果。
文摘
环境噪声和干扰可能会对数字图像智能分类方法的性能产生负面影响,导致分类速度慢。为此,研究基于改进U-Net卷积神经网络的数字图像智能分类方法。通过去噪、增强和标准化处理,提高数字图像的质量;利用改进U-Net卷积神经网络提高预处理后的图像的维度,使网络能够学习到更丰富的图像信息;采用分割算法将图像划分为多个区域,通过关键点精确定位技术,准确识别出图像中的关键特征点;对比待分类图像与已知类别的图像相似度,实现智能分类。实验结果表明:与传统的分类方法相比,新方法在分类速度更快,实际应用价值更高。
关键词
改进
u-net
卷积神经网络
数字图像
智能分类
图像分类
Keywords
improving u-net convolutional ncural network
digital image
intelligent classifica-tion
image classification
分类号
TP37 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进U-Net卷积神经网络的数字图像智能分类方法
梅光
《长江信息通信》
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部