期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
1
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
2
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal optimization algorithm(GJOA) improved whale optimization algorithm(Iwoa) unequal clustering
在线阅读 下载PDF
Hybrid Spotted Hyena and Whale Optimization Algorithm-Based Dynamic Load Balancing Technique for Cloud Computing Environment
3
作者 N Jagadish Kumar R Praveen +1 位作者 D Selvaraj D Dhinakaran 《China Communications》 2025年第8期206-227,共22页
The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is n... The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap. 展开更多
关键词 cloud computing load balancing Spotted Hyena optimization algorithm(SHOA) THROUGHPUT Virtual Machines(VMs) whale optimization algorithm(woa)
在线阅读 下载PDF
Hybrid Seagull and Whale Optimization Algorithm-Based Dynamic Clustering Protocol for Improving Network Longevity in Wireless Sensor Networks
4
作者 P.Vinoth Kumar K.Venkatesh 《China Communications》 SCIE CSCD 2024年第10期113-131,共19页
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess... Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test. 展开更多
关键词 CLUSTERING energy stability network lifetime seagull optimization algorithm(SEOA) whale optimization algorithm(woa) wireless sensor networks(WSNs)
在线阅读 下载PDF
Hybrid Prairie Dog and Beluga Whale Optimization Algorithm for Multi-Objective Load Balanced-Task Scheduling in Cloud Computing Environments
5
作者 K Ramya Senthilselvi Ayothi 《China Communications》 SCIE CSCD 2024年第7期307-324,共18页
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr... The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time. 展开更多
关键词 Beluga whale optimization algorithm(Bwoa) cloud computing improved Hopcroft-Karp algorithm Infrastructure as a Service(IaaS) Prairie Dog optimization algorithm(PDOA) Virtual Machine(VM)
在线阅读 下载PDF
Multi-strategy hybrid whale optimization algorithms for complex constrained optimization problems
6
作者 王振宇 WANG Lei 《High Technology Letters》 EI CAS 2024年第1期99-108,共10页
A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low opti... A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low optimization precision.Firstly,the population is initialized by introducing the theory of good point set,which increases the randomness and diversity of the population and lays the foundation for the global optimization of the algorithm.Then,a novel linearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation.At the same time,the global exploration and local exploitation capabilities are improved through the siege mechanism of Harris Hawks optimization algorithm.Finally,the simulation experiments are conducted on the 6 benchmark functions and Wilcoxon rank sum test to evaluate the optimization performance of the improved algorithm.The experimental results show that the proposed algorithm has more significant improvement in optimization accuracy,convergence speed and robustness than the comparison algorithm. 展开更多
关键词 whale optimization algorithm(woa) good point set nonlinear convergence factor siege mechanism
在线阅读 下载PDF
An Improved Whale Algorithm and Its Application in Truss Optimization 被引量:5
7
作者 Fengguo Jiang Lutong Wang Lili Bai 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期721-732,共12页
The current Whale Optimization Algorithm(WOA)has several drawbacks,such as slow convergence,low solution accuracy and easy to fall into the local optimal solution.To overcome these drawbacks,an improved Whale Optimiza... The current Whale Optimization Algorithm(WOA)has several drawbacks,such as slow convergence,low solution accuracy and easy to fall into the local optimal solution.To overcome these drawbacks,an improved Whale Optimization Algorithm(IWOA)is proposed in this study.IWOA can enhance the global search capability by two measures.First,the crossover and mutation operations in Differential Evolutionary algorithm(DE)are combined with the whale optimization algorithm.Second,the cloud adaptive inertia weight is introduced in the position update phase of WOA to divide the population into two subgroups,so as to balance the global search ability and local development ability.ANSYS and Matlab are used to establish the structure model.To demonstrate the application of the IWOA,truss structural optimizations on 52-bar plane truss and 25-bar space truss were performed,and the results were are compared with that obtained by other optimization algorithm.It is verified that,compared with WOA,the IWOA has higher efficiency,fast convergence speed,better solution accuracy and stability.So IWOA can be used in the optimization design of large truss structures. 展开更多
关键词 improve whale optimization algorithm differential evolutionary algorithm cloud theory simulating optimization bionic algorithm
在线阅读 下载PDF
Improved Whale Optimization Algorithm Based on Mirror Selection 被引量:5
8
作者 LI Jingnan LE Meilong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期115-123,共9页
Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is p... Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is proposed. Specific improvements includes:(1)An adaptive nonlinear inertia weight based on Branin function was introduced to balance global search and local mining.(2) A mirror selection method is proposed to improve the individual quality and speed up the convergence. By optimizing several test functions and comparing the experimental results with other three algorithms,this study verifies that WOA-MS has an excellent optimization performance. 展开更多
关键词 inertia weight mirror selection whale optimization algorithm(woa)
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
9
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于WOA-BP神经网络的热式流量测量技术研究
10
作者 刘升虎 刘太逸 +3 位作者 冉建立 郭会强 邢亚敏 梁钊睿 《仪表技术与传感器》 北大核心 2025年第4期50-54,共5页
针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的... 针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的补偿模型,提高了算法的收敛速度。实验结果表明:优化后的神经网络模型在热式流量测量方法中具有较好的流量预测效果,WOA-BP网络模型R~2达到0.989,比传统BP模型的预测精确性和鲁棒性更高,在对油井产液量预测方面具有实用价值。 展开更多
关键词 鲸鱼优化算法(woa) BP神经网络 热式流量测量方法 温度补偿
在线阅读 下载PDF
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
11
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(woa) 模拟退火算法(SA) 径向基神经网络模型(RBF) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于IWOA-CNN-LSTM模型的光伏发电功率预测
12
作者 王琦 徐晓光 《曲阜师范大学学报(自然科学版)》 2025年第4期97-102,共6页
该文提出了一种结合改进鲸鱼优化算法(IWOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的超短期光伏发电组合预测模型.使用皮尔逊相关系数选取对光伏发电功率影响较大的因素作为输入,建立CNN-LSTM模型,使用IWOA算法优化模型超参数,实... 该文提出了一种结合改进鲸鱼优化算法(IWOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的超短期光伏发电组合预测模型.使用皮尔逊相关系数选取对光伏发电功率影响较大的因素作为输入,建立CNN-LSTM模型,使用IWOA算法优化模型超参数,实现对输入数据高维特征的提取和拟合来进行预测,提高了模型预测精度.基于澳大利亚某光伏电站数据的实验结果表明,与其他模型相比,所提出的预测模型具有更高的精度. 展开更多
关键词 光伏功率预测 卷积神经网络 长短期记忆网络 鲸鱼优化算法
在线阅读 下载PDF
基于WOA-VMD和PSO-DSN的短期时空光伏功率预测
13
作者 赵英男 彭真 阮玉园 《计算机系统应用》 2025年第8期264-275,共12页
由于太阳能具有间歇性、不稳定性和随机性,精确的短期光伏(photovoltaic,PV)功率预测具有较大的挑战,阻碍了光伏与智能电网的有机整合.为此,本文提出了一种名为WVPD(WOA-VMD和PSO-DSN)的方法.首先,应用变分模态分解(variational mode de... 由于太阳能具有间歇性、不稳定性和随机性,精确的短期光伏(photovoltaic,PV)功率预测具有较大的挑战,阻碍了光伏与智能电网的有机整合.为此,本文提出了一种名为WVPD(WOA-VMD和PSO-DSN)的方法.首先,应用变分模态分解(variational mode decomposition,VMD)获得多个本征模态函数(intrinsic mode function,IMF)分量.同时,结合鲸鱼优化算法(whale optimization algorithm,WOA)算法进行模式分量和惩罚因子参数优化,解决VMD分解不足和模式混合问题.然后,利用PV功率和数值天气预报(numerical weather prediction,NWP)数据的空间和时间相关性构建新型双流网络(dual-stream network,DSN),即结合挤压和激励网络(squeeze-andexcitation networks,SENet)以及双向门控循环单元(bidirectional gated recurrent unit,BiGRU).同时,采用粒子群优化算法(particle swarm optimization,PSO)优化DSN中学习率和批量大小.最后,验证得出与深度学习混合模型相比,MSE平均提升78.6%,RMSE平均提升53.7%,MAE平均提升37.7%,所提出的WVPD性能优越.代码共享于https://github.com/ruanyuyuan/PV-power-forecast. 展开更多
关键词 光伏功率预测 变分模态分解 双流网络 鲸鱼优化算法 粒子群优化
在线阅读 下载PDF
基于GSWOA的风光互补系统功率波动平抑策略
14
作者 李永坚 杨佳靓 +1 位作者 贺敏霞 杨文轩 《电工技术》 2025年第19期17-22,27,共7页
风光互补发电作为一种高效利用可再生能源的方式,尽管应用广泛,但在实际操作中仍面临诸多技术难题。为解决风光发电系统原始功率输出对电力系统稳定性的影响,充分发挥不同类型储能装置间的优势,通过两者的互补关系来实现混合储能系统(HE... 风光互补发电作为一种高效利用可再生能源的方式,尽管应用广泛,但在实际操作中仍面临诸多技术难题。为解决风光发电系统原始功率输出对电力系统稳定性的影响,充分发挥不同类型储能装置间的优势,通过两者的互补关系来实现混合储能系统(HESS)中功率的精确分配,采用一种基于全局搜索策略的鲸鱼优化算法与变分模态分解算法(GSWOA-VMD)对功率进行分配。通过滑动平均滤波算法确定并网功率和HESS需平抑的波动功率,并利用GSWOA-VMD分解风光功率波动。为进一步挖掘VMD算法剩余量中的信息,对其进行二次分解,完成HESS的初级功率分配。实验结果显示,该方法可精确分配储能系统的工作负荷,充分发挥不同类型储能的协同效应,显著改善并网功率的平稳性,从而提升电网运行的可靠程度。 展开更多
关键词 风光互补 波动平抑 改进鲸鱼优化算法 变分模态分解 混合储能
在线阅读 下载PDF
基于CEEMD-WOA-LSTM的光伏发电功率预测 被引量:4
15
作者 李恺丽 王剑斌 +1 位作者 沈怡俊 陈博 《热能动力工程》 北大核心 2025年第2期136-147,共12页
针对实际电力系统中光伏发电的波动性和不确定性,建立了基于CEEMD-WOA-LSTM的光伏发电功率预测模型。首先,采用皮尔逊相关系数法确定辐照度、湿度、温度和风速为光伏功率的关键影响因素,基于高斯混合模型聚类将数据集分为晴天、多云、雨... 针对实际电力系统中光伏发电的波动性和不确定性,建立了基于CEEMD-WOA-LSTM的光伏发电功率预测模型。首先,采用皮尔逊相关系数法确定辐照度、湿度、温度和风速为光伏功率的关键影响因素,基于高斯混合模型聚类将数据集分为晴天、多云、雨天3种天气类型,以降低训练集与测试集之间的差异并提高预测模型的泛化能力,从而完成数据预处理。其次,采用互补集合经验模态分解对预处理后的数据进行分解并重构,降低其强随机性和复杂性,通过长短期记忆神经网络对分解所得的各本征模态函数分量进行功率预测,并利用鲸鱼优化算法优化网络参数以提升预测精度,从而叠加各分量的预测结果以确定最终预测值。最后,通过实验验证所提方法的有效性。结果表明:与现有方法相比,在不同天气条件下CEEMD-WOA-LSTM的预测精度均有所提高,且在复杂天气条件时展现出更好的稳定性和鲁棒性。 展开更多
关键词 光伏功率预测 CEEMD LSTM神经网络 鲸鱼优化算法
原文传递
基于WOA-BP神经网络的汽车滚装船主尺度预测
16
作者 张明霞 谢秋利 《武汉理工大学学报(交通科学与工程版)》 2025年第4期806-813,共8页
为建立准确的汽车滚装船主尺度预测模型,分别采用单变量回归、多元线性回归、BP神经网络以及鲸鱼优化算法(WOA)优化后的BP神经网络进行结果预测.结果表明:单变量回归容易在部分数据子集上表现不佳;多元线性回归结果更合理,但预测效果不... 为建立准确的汽车滚装船主尺度预测模型,分别采用单变量回归、多元线性回归、BP神经网络以及鲸鱼优化算法(WOA)优化后的BP神经网络进行结果预测.结果表明:单变量回归容易在部分数据子集上表现不佳;多元线性回归结果更合理,但预测效果不稳定;基于WOA-BP神经网络模型的预测方法与标准BP神经网络模型相比,决定系数(R^(2))提高了1.4%,均方误差(MSE)降低了15.2%,平均绝对误差(MAE)降低了9.2%,均方根误差(RMSE)降低了8.0%,WOA-BP神经网络模型具有更高的准确性和鲁棒性. 展开更多
关键词 汽车滚装船 主尺度确定 单变量回归 多元线性回归 BP神经网络 鲸鱼优化算法(woa)
在线阅读 下载PDF
基于相似日和IWOA优化BiLSTM的短期电力负荷预测
17
作者 朱莉 李豪 +2 位作者 汪小豪 姜成龙 曹明海 《中南民族大学学报(自然科学版)》 2025年第4期507-514,共8页
为了有效提升短期负荷预测的精度,提出了一种基于相似日和IWOA优化BiLSTM的短期电力负荷预测模型.该模型首先利用Pearson相关性分析选取负荷的主要影响因素,并利用综合匹配相似度选取相似日,为模型提供更有效的输入;然后研究了一种基于... 为了有效提升短期负荷预测的精度,提出了一种基于相似日和IWOA优化BiLSTM的短期电力负荷预测模型.该模型首先利用Pearson相关性分析选取负荷的主要影响因素,并利用综合匹配相似度选取相似日,为模型提供更有效的输入;然后研究了一种基于非线性控制参数策略和种群变异策略的IWOA算法,对BiLSTM网络的参数进行寻优,构建IWOA-BiLSTM预测模型;最后以澳大利亚真实负荷数据集作为实际算例进行验证,结果表明:该预测模型相较于其他模型获得了更高的预测精度,证明了该方法的有效性. 展开更多
关键词 短期负荷预测 改进鲸鱼优化算法 相似日 双向长短期记忆网络 超参数寻优
在线阅读 下载PDF
基于WOA-LQR的智能车辆路径跟踪控制 被引量:1
18
作者 张闯 赵奉奎 +1 位作者 张涌 张伟 《南京信息工程大学学报》 北大核心 2025年第3期352-362,共11页
针对无人驾驶车辆在特殊行驶工况(冰雪路面、雨天路面、高速换道)下路径跟踪控制精度差的问题,本文设计了一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)的LQR控制器(WOA-LQR).首先,基于二自由度车辆动力学模型建立跟踪误差模... 针对无人驾驶车辆在特殊行驶工况(冰雪路面、雨天路面、高速换道)下路径跟踪控制精度差的问题,本文设计了一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)的LQR控制器(WOA-LQR).首先,基于二自由度车辆动力学模型建立跟踪误差模型,以此为基础设计离散LQR控制器,并采用前馈控制消除由于系统简化带来的误差.同时,为解决固定权重系数下的LQR控制器对特殊行驶工况适应性差导致跟踪精度低、车辆失稳的问题,在以横向误差、航向角误差作为评价指标的基础上,考虑车辆侧向加速度和前轮转角对车辆维持稳定的影响,并对评价指标设定相应的权重系数,设计了目标值最小的适应度函数,提出一种基于鲸鱼算法优化的LQR自适应权重系数调节策略.最后,通过Carsim/Simulink联合仿真对WOA-LQR控制器在不同工况下进行路径跟踪仿真实验.结果表明:本文提出的控制策略在复杂行驶工况下有着良好的跟踪效果,显著提升了车辆在路径跟踪过程中的控制精度,具有较强的鲁棒性. 展开更多
关键词 无人驾驶车辆 路径跟踪控制 线性二次型调节器 前馈控制 鲸鱼优化算法
在线阅读 下载PDF
基于WOA-IC优化神经网络的隧道爆破振动预测研究 被引量:2
19
作者 高宇璠 傅洪贤 《振动与冲击》 北大核心 2025年第4期229-237,共9页
为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量... 为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量化,建立了包括3个定量参数和10个定性参数的更完整的数据集。利用信息准则对模型复杂度的反馈,构建了一个提高模型泛化能力的双层优化结构,分析改进ANN模型的激活函数和训练算法最优组合,并引入鲸鱼算法优化模型初始权值和阈值的选取,降低模型输出结果的偏差和波动。对比分析WOA-IC-ANN模型与传统经验公式、ANN模型、IC-ANN模型、WOA-ANN模型预测结果的差异。研究表明,WOA-IC-ANN模型的预测结果与实际吻合更好,误差显著降低,具有较好的泛化能力。研究成果可用于隧道爆破工程的振动预测,并为类似工作提供借鉴和参考。 展开更多
关键词 爆破振动 预测模型 信息准则(IC) 鲸鱼优化算法(woa) 人工神经网络(ANN)
在线阅读 下载PDF
WOA优化LightGBM在火成岩测井岩性识别中的应用 被引量:2
20
作者 冯欢 张国强 +3 位作者 曹军 任宏 万文春 刘迪仁 《地球物理学进展》 北大核心 2025年第1期230-242,共13页
渤海南部莱州湾地区的火成岩岩性复杂多变,常规测井交会图识别效果差.为提升该地区火成岩岩性识别精度,结合全局优化能力强的鲸鱼优化算法(WOA)和高效的轻量级梯度提升机(LightGBM),提出了基于WOA-LightGBM的火成岩测井岩性识别方法.首... 渤海南部莱州湾地区的火成岩岩性复杂多变,常规测井交会图识别效果差.为提升该地区火成岩岩性识别精度,结合全局优化能力强的鲸鱼优化算法(WOA)和高效的轻量级梯度提升机(LightGBM),提出了基于WOA-LightGBM的火成岩测井岩性识别方法.首先,通过分析岩性的测井响应特征,选择岩心和薄片等地质资料完整、常规九条测井曲线齐全的测井数据作为样本集;然后将样本集输入到WOA-LightGBM、WOA-AdaBoost、WOA-SVM、LightGBM、AdaBoost、SVM六种模型中进行识别,并将识别结果进行对比验证;最后将识别模型应用于15口井中.研究结果表明:当鲸鱼种群为50时,最佳超参数下的WOA-LightGBM模型的识别精度最高、泛化能力最好,在样本集中识别准确率达91.62%,ROC-AUC为0.9676,实例井中整体解释符合率达85%.WOA-LightGBM可作为利用测井曲线智能识别渤海火成岩岩性的有效方法,并为其他类似区块的火成岩岩性识别提供参考. 展开更多
关键词 莱州湾 火成岩 测井岩性识别 轻量级梯度提升机 超参数 鲸鱼优化算法
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部