期刊文献+
共找到188篇文章
< 1 2 10 >
每页显示 20 50 100
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
1
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal optimization algorithm(GJOA) improved whale optimization algorithm(iwoa) unequal clustering
在线阅读 下载PDF
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
2
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
Hybrid Prairie Dog and Beluga Whale Optimization Algorithm for Multi-Objective Load Balanced-Task Scheduling in Cloud Computing Environments
3
作者 K Ramya Senthilselvi Ayothi 《China Communications》 SCIE CSCD 2024年第7期307-324,共18页
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr... The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time. 展开更多
关键词 Beluga whale optimization algorithm(BWOA) cloud computing improved Hopcroft-Karp algorithm Infrastructure as a Service(IaaS) Prairie Dog optimization algorithm(PDOA) Virtual Machine(VM)
在线阅读 下载PDF
An Improved Whale Algorithm and Its Application in Truss Optimization 被引量:5
4
作者 Fengguo Jiang Lutong Wang Lili Bai 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期721-732,共12页
The current Whale Optimization Algorithm(WOA)has several drawbacks,such as slow convergence,low solution accuracy and easy to fall into the local optimal solution.To overcome these drawbacks,an improved Whale Optimiza... The current Whale Optimization Algorithm(WOA)has several drawbacks,such as slow convergence,low solution accuracy and easy to fall into the local optimal solution.To overcome these drawbacks,an improved Whale Optimization Algorithm(IWOA)is proposed in this study.IWOA can enhance the global search capability by two measures.First,the crossover and mutation operations in Differential Evolutionary algorithm(DE)are combined with the whale optimization algorithm.Second,the cloud adaptive inertia weight is introduced in the position update phase of WOA to divide the population into two subgroups,so as to balance the global search ability and local development ability.ANSYS and Matlab are used to establish the structure model.To demonstrate the application of the IWOA,truss structural optimizations on 52-bar plane truss and 25-bar space truss were performed,and the results were are compared with that obtained by other optimization algorithm.It is verified that,compared with WOA,the IWOA has higher efficiency,fast convergence speed,better solution accuracy and stability.So IWOA can be used in the optimization design of large truss structures. 展开更多
关键词 improve whale optimization algorithm differential evolutionary algorithm cloud theory simulating optimization bionic algorithm
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
5
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于相似日和IWOA优化BiLSTM的短期电力负荷预测
6
作者 朱莉 李豪 +2 位作者 汪小豪 姜成龙 曹明海 《中南民族大学学报(自然科学版)》 2025年第4期507-514,共8页
为了有效提升短期负荷预测的精度,提出了一种基于相似日和IWOA优化BiLSTM的短期电力负荷预测模型.该模型首先利用Pearson相关性分析选取负荷的主要影响因素,并利用综合匹配相似度选取相似日,为模型提供更有效的输入;然后研究了一种基于... 为了有效提升短期负荷预测的精度,提出了一种基于相似日和IWOA优化BiLSTM的短期电力负荷预测模型.该模型首先利用Pearson相关性分析选取负荷的主要影响因素,并利用综合匹配相似度选取相似日,为模型提供更有效的输入;然后研究了一种基于非线性控制参数策略和种群变异策略的IWOA算法,对BiLSTM网络的参数进行寻优,构建IWOA-BiLSTM预测模型;最后以澳大利亚真实负荷数据集作为实际算例进行验证,结果表明:该预测模型相较于其他模型获得了更高的预测精度,证明了该方法的有效性. 展开更多
关键词 短期负荷预测 改进鲸鱼优化算法 相似日 双向长短期记忆网络 超参数寻优
在线阅读 下载PDF
基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型
7
作者 师国东 胡明茂 +3 位作者 宫爱红 龚青山 郭庆贺 谭浩 《计算机集成制造系统》 北大核心 2025年第9期3467-3484,共18页
为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用... 为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用多策略改进的鲸鱼优化算法(MSIWOA)对长短期记忆神经网络(LSTM)中的超参数进行自适应寻优,并将优化后的超参数代入LSTM中对车辆油耗进行建模预测。结合实际车辆油耗算例进行对比实验,结果表明,相对于其他对比模型,XGBoost-MSIWOA-LSTM预测模型预测精度更高,对降低车辆油耗具有一定的指导意义。 展开更多
关键词 油耗预测 极端梯度提升树 多策略改进的鲸鱼优化算法 长短期记忆神经网络 自适应寻优
在线阅读 下载PDF
基于IWOA-BPNN模型的金属结构件生产流程时间预测
8
作者 孟荣华 王佳怡 +2 位作者 吴正佳 邓少华 雷定坤 《工业工程》 2025年第3期42-51,共10页
针对大型结构件制造阶段多且各阶段关系复杂导致流程时间精准预测难度大的问题,提出了“特征提取—模型构建—精度提升—结果对比”的解决思路。基于历史数据,利用PCA高效滤取影响流程时间预测值的特征参数,降低数据冗余性;设计最小流... 针对大型结构件制造阶段多且各阶段关系复杂导致流程时间精准预测难度大的问题,提出了“特征提取—模型构建—精度提升—结果对比”的解决思路。基于历史数据,利用PCA高效滤取影响流程时间预测值的特征参数,降低数据冗余性;设计最小流程时间的BPNN预测模型的结构和初始参数;改进鲸鱼群算法优化其初始权重和阈值,以提升模型预测精度。利用Plant Simulation仿真生成了增强数据,构建历史数据加增强数据的样本库,验证模型与精度提升方法的有效性。结果表明,本文所提方法各项误差指标更小,具有更快的迭代速度和更优的最佳适应度值,为大型构件流程时间的精准预测提供了新的解决思路。 展开更多
关键词 改进鲸鱼群算法(iwoa) BP神经网络 流程时间预测 多阶段加工
在线阅读 下载PDF
基于IWOA-SVR的锂离子电池健康状态在线快速检测 被引量:2
9
作者 陈洋 黄江东 +2 位作者 余春雷 谢基 姜伟 《分析测试学报》 北大核心 2025年第3期402-410,共9页
该文提出了一种融合改进鲸鱼优化算法与支持向量回归(IWOA-SVR)的锂离子电池健康状态(SOH)检测评估方法。首先收集不同充放电策略下的充放电数据,并提取关键电池老化特征参数;然后运用皮尔逊相关性分析验证了特征参数与SOH间的强相关性... 该文提出了一种融合改进鲸鱼优化算法与支持向量回归(IWOA-SVR)的锂离子电池健康状态(SOH)检测评估方法。首先收集不同充放电策略下的充放电数据,并提取关键电池老化特征参数;然后运用皮尔逊相关性分析验证了特征参数与SOH间的强相关性,算法在传统鲸鱼优化算法中融入自适应权重调整机制与Levy飞行策略,有效克服了传统方法在线评估SOH时误差偏大的问题。最后,采用恒流恒压充电与恒流充电两种典型工况下的实验测试数据进行验证,结果表明IWOA-SVR检测方法具有更高的稳定性和准确性,最大误差可控制在1.4%以内。同时,在平均绝对百分比误差(MAPE)和均方根误差(RMSE)两项关键评估指标上,IWOA-SVR均显著优于对比算法,充分证明了其在锂离子电池SOH在线检测中的高精度与强鲁棒性。 展开更多
关键词 锂离子电池 改进鲸鱼优化算法 支持向量回归 电池健康状态检测
在线阅读 下载PDF
基于IWOA-VMD-MCKD模型的齿轮箱轴承故障诊断
10
作者 郭楠 滕伟 +3 位作者 陈晨 彭迪康 马志勇 柳亦兵 《风机技术》 2025年第2期59-66,共8页
针对风电齿轮箱变工况和强噪声干扰条件下故障信号信噪比低,滚动轴承微弱故障特征难以提取的问题,提出一种结合改进鲸鱼优化算法(IWOA)、变分模态分解(VMD)和最大相关峭度解卷积(MCKD)的方法以提取滚动轴承的微弱故障特征。首先,引用Log... 针对风电齿轮箱变工况和强噪声干扰条件下故障信号信噪比低,滚动轴承微弱故障特征难以提取的问题,提出一种结合改进鲸鱼优化算法(IWOA)、变分模态分解(VMD)和最大相关峭度解卷积(MCKD)的方法以提取滚动轴承的微弱故障特征。首先,引用Logistic混沌映射、余弦收敛因子和自适应权重改进鲸鱼优化算法(WOA);其次,IWOA利用最小平均包络熵为指标确定VMD与MCKD算法的最优参数,突出信号中的故障冲击成分;最后,通过包络谱提取出轴承故障特征频率。仿真数据和实际风场数据案例分析结果表明,该方法能够有效提取出强噪声背景下的滚动轴承微弱故障特征。 展开更多
关键词 变分模态分解 改进鲸鱼优化算法 最大相关峭度反卷积 故障诊断 齿轮箱轴承
在线阅读 下载PDF
基于IWOA的绿色仓储微电网优化调度研究
11
作者 刘宇东 邢作霞 +2 位作者 陈一硕 陈明阳 刘洋 《电力系统装备》 2025年第5期174-177,共4页
在能源转型的大背景下,为实现绿色仓储微电网的高效运行,以并网模式下微电网日运行系统的经济收益与环境收益为综合目标,构建优化调度模型。为求解模型,提出一种改进的鲸鱼优化算法,引入改进Circle混沌映射优化初始种群分布,以及自适应... 在能源转型的大背景下,为实现绿色仓储微电网的高效运行,以并网模式下微电网日运行系统的经济收益与环境收益为综合目标,构建优化调度模型。为求解模型,提出一种改进的鲸鱼优化算法,引入改进Circle混沌映射优化初始种群分布,以及自适应权重平衡全局探索与局部开发能力。经算例分析,将改进鲸鱼算法与传统鲸鱼算法、传统粒子群算法对比,结果表明改进鲸鱼算法在收敛速度和优化值方面表现更优,综合收益相比其他两种算法分别提升6.8%和10.44%。对综合收益最大的调度策略进行分析,为绿色仓储微电网提供了有效调度策略。 展开更多
关键词 微电网 绿色仓储 改进鲸鱼优化算法 优化调度策略
在线阅读 下载PDF
滑坡位移CEEMD-CIWOA-BP预测模型
12
作者 余国强 侯克鹏 孙华芬 《有色金属(矿山部分)》 2025年第1期106-114,142,共10页
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量... 为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。 展开更多
关键词 滑坡位移 互补集合经验模态分解 BP神经网络 改进鲸鱼优化算法 时间序列
在线阅读 下载PDF
基于IWOA-BiLSTM的测井数据储层预测方法
13
作者 陈子杰 李琼 《物探化探计算技术》 2025年第3期420-426,共7页
测井数据资料在油气资源的勘探中扮演着重要角色,其中包含的大量地质和储层信息是进行储层预测的关键。近年来,优化算法和神经网络在大数据挖掘与预测研究中脱颖而出,因此笔者创新性地将改进鲸鱼优化算法(IWOA)和双向长短时记忆神经网络... 测井数据资料在油气资源的勘探中扮演着重要角色,其中包含的大量地质和储层信息是进行储层预测的关键。近年来,优化算法和神经网络在大数据挖掘与预测研究中脱颖而出,因此笔者创新性地将改进鲸鱼优化算法(IWOA)和双向长短时记忆神经网络(BiLSTM)结合起来,构建了IWOA-BiLSTM算法,并引入测井数据用于储层预测,选取了声波时差、密度、自然伽马和电阻率四条测井曲线,并以优化后的模型训练结果与未经优化的BiLSTM模型训练结果进行了对比。随后,将算法用于实际的测井数据储层预测,该混合算法在预测过程中表现出色,以接近90%的预测准确率完成了储层预测任务。综合分析预测结果,系统地归纳了IWOA-BiLSTM算法的优势,为油气资源的勘探与开发引入一种新的方法。 展开更多
关键词 测井数据 改进鲸鱼优化算法 双向长短时记忆神经网络 储层预测
在线阅读 下载PDF
基于IWOA-BERT的磨煤机故障预警
14
作者 段明达 张胜 《振动与冲击》 北大核心 2025年第11期288-294,共7页
实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过... 实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过改进传统鲸鱼算法的收敛因子和引入高斯变异算子来增强算法的寻优能力;其次,选取与磨煤机故障相关的特征参数作为建模变量,利用改进鲸鱼算法优化BERT模型的超参数,建立故障预警模型;然后,计算正常状态数据中每个滑动窗口的相似度均值,选取最小值乘以阈值系数确定预警阈值;最后,根据专家系统推理预警时刻的故障类型并给出检修指导。将所提方法应用于某350 MW机组磨煤机的运行中,结果表明模型的预测准确率高,且能提前24 s给出预警信息,为工程应用提供了参考。 展开更多
关键词 磨煤机 故障预警 BERT算法 改进鲸鱼优化算法(iwoa) 专家系统
在线阅读 下载PDF
基于IWOA-LightGBM的煤自燃程度预测方法研究
15
作者 臧燕杰 《中国安全科学学报》 北大核心 2025年第S1期64-70,共7页
为提升煤自燃预测精度,提出基于改进鲸鱼优化算法(IWOA)与轻量级梯度提升机(LightGBM)融合的预测模型。首先,通过SPSS 27分析煤自燃程序升温试验中指标气体浓度的相关性,采用核主成分分析法(KPCA)提取主成分数据;然后,针对传统鲸鱼算法(... 为提升煤自燃预测精度,提出基于改进鲸鱼优化算法(IWOA)与轻量级梯度提升机(LightGBM)融合的预测模型。首先,通过SPSS 27分析煤自燃程序升温试验中指标气体浓度的相关性,采用核主成分分析法(KPCA)提取主成分数据;然后,针对传统鲸鱼算法(WOA)易陷入局部最优的问题,引入Circle混沌映射、自适应权重及最优领域扰动策略改进其全局搜索能力,进而优化LightGBM超参数以提升预测精度并抑制过拟合;最后,将该模型应用于新疆沙吉海煤矿实际预测场景。结果表明:IWOA-LightGBM模型相较于其他模型,在测试样本中的准确率A分别提高13.33%、26.66%、20%、20%、13.33%;精确率P分别提高12.23%、24.45%、18.89%、18.89%、12.23%;召回率R分别提高13.1%、23.02%、18.1%、16.07%、10.56%;F_( 1)分别提高12.56%、23.79%、18.52%、17.58%、13.15%。模型在复杂条件下的可靠性与稳定性,展现出优于传统模型的泛化性与鲁棒性,能够为矿井煤自燃灾害预警提供了新的技术方案。 展开更多
关键词 煤自燃 改进鲸鱼优化算法(iwoa) 轻量级梯度提升机(LightGBM) 核主成分分析法(KPCA) 预测模型
原文传递
基于1DCNN-IWOA-SVM的齿轮箱故障诊断方法研究
16
作者 贾丽臻 雷欣然 李耀华 《机械设计》 北大核心 2025年第7期98-106,共9页
齿轮箱作为航空发动机重要的传动装置,工作环境恶劣,导致振动信号呈多种信息叠加难以区分。针对齿轮箱故障特征难以提取、故障难以识别的问题,提出一种基于一维卷积神经网络结合改进鲸鱼优化支持向量机的航空发动机齿轮箱故障诊断方法,... 齿轮箱作为航空发动机重要的传动装置,工作环境恶劣,导致振动信号呈多种信息叠加难以区分。针对齿轮箱故障特征难以提取、故障难以识别的问题,提出一种基于一维卷积神经网络结合改进鲸鱼优化支持向量机的航空发动机齿轮箱故障诊断方法,实现航空发动机齿轮箱故障快速、精准诊断。使用一维卷积神经通过其内置的卷积和池化对振动信号进行故障特征提取,在鲸鱼优化算法中引入混沌映射、非线性因子和自适应权重对其进行改进;使用改进后的鲸鱼优化算法对支持向量机进行参数寻优,再将一维卷积神经网络提取的故障特征输入到经改进鲸鱼优化参数后的支持向量机中进行故障诊断。仿真结果表明:所提的故障诊断模型对齿轮箱故障具有良好的诊断效果,与其他方法相比效果更好、泛化能力更强。 展开更多
关键词 齿轮箱 故障诊断 一维卷积神经网络 改进鲸鱼优化算法 支持向量机
原文传递
基于IWOA-BiLSTM-MHSA神经网络的超短期风电功率预测
17
作者 张州潼 郭欢 《软件导刊》 2025年第7期46-53,共8页
为提高超短期风电功率预测精度,从超参数寻优与模型优化两个角度出发,提出一种改进鲸鱼优化算法结合多头注意力机制的双向长短期记忆神经网络模型。首先,在双向长短期记忆神经网络的基础上引入时序多头自注意力机制,用于捕捉时序中更长... 为提高超短期风电功率预测精度,从超参数寻优与模型优化两个角度出发,提出一种改进鲸鱼优化算法结合多头注意力机制的双向长短期记忆神经网络模型。首先,在双向长短期记忆神经网络的基础上引入时序多头自注意力机制,用于捕捉时序中更长距离的依赖关系,增加模型的表征和泛化能力;其次,采用改进的鲸鱼优化算法对模型超参数进行寻优,提出自适应参数和阈值策略,增强算法的全局搜索能力和局部搜索速率;最后,基于新疆某地区风电场的实测数据展开算例分析。与多种传统机器学习和深度学习预测模型相比,所提模型具有更高的预测精度,特别是在数据集1中的MAPE相较LSTM、BP、RNN、GRU、BiLSTM模型分别降低了4.892%、7.722%、6.196%、3.864%、2.159%。 展开更多
关键词 双向长短时期记忆网络 多头自注意力机制 风电功率预测 改进鲸鱼优化算法
在线阅读 下载PDF
基于注意力机制的IWOA-BiGRU超短期风电功率预测 被引量:3
18
作者 向玲 金子皓 李林春 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第4期87-93,102,共8页
超短期风电功率预测对电力系统调度及大规模风电并网具有重要作用。为得到准确可靠的风电功率预测结果,针对风电功率数据非线性和时序性的特点,提出一种基于IWOA-AT-BiGRU的超短期风电功率预测方法。首先,提出改进鲸鱼优化算法(improved... 超短期风电功率预测对电力系统调度及大规模风电并网具有重要作用。为得到准确可靠的风电功率预测结果,针对风电功率数据非线性和时序性的特点,提出一种基于IWOA-AT-BiGRU的超短期风电功率预测方法。首先,提出改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)来优化风电功率预测模型的超参数,加速模型收敛,提高预测准确度;然后,在BiGRU中加入注意力机制(AT),AT用来加强重要信息对风功率的影响,BiGRU同时考虑数据的正反向信息,充分挖掘数据的时序特征;最后,通过某风电场实测数据进行实验,结果表明提出的方法预测准确度均高于其他对比模型,具有良好的预测性能。 展开更多
关键词 风电功率 超短期预测 注意力机制 改进鲸鱼优化算法 双向门控循环单元
在线阅读 下载PDF
基于IWOA算法的矿井风量智能优化研究 被引量:4
19
作者 张景钢 何鑫 林桂玲 《矿业安全与环保》 北大核心 2024年第6期177-184,191,共9页
为解决复杂矿井通风网络中存在的风量分配不合理、通风调节设施设置不当,以及通风功耗高等问题,基于图论与通风网络理论,构建以矿井通风网络风量分配基本定律、通风巷道风量风压、主要通风机运行工况为约束条件,以矿井通风网络运行功耗... 为解决复杂矿井通风网络中存在的风量分配不合理、通风调节设施设置不当,以及通风功耗高等问题,基于图论与通风网络理论,构建以矿井通风网络风量分配基本定律、通风巷道风量风压、主要通风机运行工况为约束条件,以矿井通风网络运行功耗最低为目标函数的矿井通风网络非线性优化数学模型,并运用罚函数法将约束条件转换为目标函数的惩罚项。在标准鲸鱼群优化算法的基础上,提出一种融合混沌反向学习、Beta分布、非线性自适应惯性权重的多策略改进方法,通过提高算法的求解精度与收敛速度,增强算法的局部开发与全局寻优能力。采用改进鲸鱼群(IWOA)算法对模型进行求解,并将冀中能源股份有限公司邢东煤矿通风系统作为研究对象进行模拟,结果表明:该煤矿的矿井通风网络运行总功耗下降13.43%,矿井各用风巷道风量分布合理,符合矿井实际通风需求,证明所采用算法的可行性与优异性。 展开更多
关键词 矿井通风 风量智能优化 改进鲸鱼群算法 非线性自适应权重 混沌反向学习 BETA分布
在线阅读 下载PDF
基于IWOA-PNN模型的生物组织变性识别方法 被引量:2
20
作者 曹菁 贺绍相 +3 位作者 陈光强 杨江河 刘备 彭梓齐 《湖南文理学院学报(自然科学版)》 CAS 2024年第3期24-29,共6页
为了提高高强度聚焦超声(HIFU)治疗过程中生物组织变性识别率,提出了一种基于改进鲸鱼优化算法优化概率神经网络(IWOA-PNN)模型的生物组织变性识别方法。首先通过改进收敛因子和加入自适应权重因子提高WOA优化算法的寻优速度和精度,然... 为了提高高强度聚焦超声(HIFU)治疗过程中生物组织变性识别率,提出了一种基于改进鲸鱼优化算法优化概率神经网络(IWOA-PNN)模型的生物组织变性识别方法。首先通过改进收敛因子和加入自适应权重因子提高WOA优化算法的寻优速度和精度,然后利用IWOA算法优化PNN的平滑因子,以提高变性识别精度,最后以超声回波信号多尺度熵为特征参数输入IWOA-PNN模型,得出生物组织变性识别率。实验结果表明,与普通PNN和WOA-PNN模型相比,基于IWOA-PNN模型的生物组织变性识别率更高,更能精确地识别HIFU治疗过程中生物组织是否变性,指导临床医生进行准确的HIFU疗效评价。 展开更多
关键词 高强度聚焦超声 生物组织 变性识别 改进鲸鱼优化算法 概率神经网络
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部