The current Whale Optimization Algorithm(WOA)has several drawbacks,such as slow convergence,low solution accuracy and easy to fall into the local optimal solution.To overcome these drawbacks,an improved Whale Optimiza...The current Whale Optimization Algorithm(WOA)has several drawbacks,such as slow convergence,low solution accuracy and easy to fall into the local optimal solution.To overcome these drawbacks,an improved Whale Optimization Algorithm(IWOA)is proposed in this study.IWOA can enhance the global search capability by two measures.First,the crossover and mutation operations in Differential Evolutionary algorithm(DE)are combined with the whale optimization algorithm.Second,the cloud adaptive inertia weight is introduced in the position update phase of WOA to divide the population into two subgroups,so as to balance the global search ability and local development ability.ANSYS and Matlab are used to establish the structure model.To demonstrate the application of the IWOA,truss structural optimizations on 52-bar plane truss and 25-bar space truss were performed,and the results were are compared with that obtained by other optimization algorithm.It is verified that,compared with WOA,the IWOA has higher efficiency,fast convergence speed,better solution accuracy and stability.So IWOA can be used in the optimization design of large truss structures.展开更多
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ...Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.展开更多
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability...Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.展开更多
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do...In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network.展开更多
Facial Expression Recognition(FER)has been an importantfield of research for several decades.Extraction of emotional characteristics is crucial to FERs,but is complex to process as they have significant intra-class va...Facial Expression Recognition(FER)has been an importantfield of research for several decades.Extraction of emotional characteristics is crucial to FERs,but is complex to process as they have significant intra-class variances.Facial characteristics have not been completely explored in static pictures.Previous studies used Convolution Neural Networks(CNNs)based on transfer learning and hyperparameter optimizations for static facial emotional recognitions.Particle Swarm Optimizations(PSOs)have also been used for tuning hyperparameters.However,these methods achieve about 92 percent in terms of accuracy.The existing algorithms have issues with FER accuracy and precision.Hence,the overall FER performance is degraded significantly.To address this issue,this work proposes a combination of CNNs and Long Short-Term Memories(LSTMs)called the HCNN-LSTMs(Hybrid CNNs and LSTMs)approach for FERs.The work is evaluated on the benchmark dataset,Facial Expression Recog Image Ver(FERC).Viola-Jones(VJ)algorithms recognize faces from preprocessed images followed by HCNN-LSTMs feature extractions and FER classifications.Further,the success rate of Deep Learning Techniques(DLTs)has increased with hyperparameter tunings like epochs,batch sizes,initial learning rates,regularization parameters,shuffling types,and momentum.This proposed work uses Improved Weight based Whale Optimization Algorithms(IWWOAs)to select near-optimal settings for these parameters using bestfitness values.The experi-mentalfindings demonstrated that the proposed HCNN-LSTMs system outper-forms the existing methods.展开更多
Diagnosing gastrointestinal tract diseases is a critical task requiring accurate and efficient methodologies.While deep learning models have significantly advanced medical image analysis,challenges such as imbalanced ...Diagnosing gastrointestinal tract diseases is a critical task requiring accurate and efficient methodologies.While deep learning models have significantly advanced medical image analysis,challenges such as imbalanced datasets and redundant features persist.This study proposes a novel framework that customizes two deep learning models,NasNetMobile and ResNet50,by incorporating bottleneck architectures,named as NasNeck and ResNeck,to enhance feature extraction.The feature vectors are fused into a combined vector,which is further optimized using an improved Whale Optimization Algorithm to minimize redundancy and improve discriminative power.The optimized feature vector is then classified using artificial neural network classifiers,effectively addressing the limitations of traditional methods.Data augmentation techniques are employed to tackle class imbalance,improving model learning and generalization.The proposed framework was evaluated on two publicly available datasets:Hyper-Kvasir and Kvasir v2.The Hyper-Kvasir dataset,comprising 23 gastrointestinal disease classes,yielded an impressive 96.0%accuracy.On the Kvasir v2 dataset,which contains 8 distinct classes,the framework achieved a remarkable 98.9%accuracy,further demonstrating its robustness and superior classification performance across different gastrointestinal datasets.The results demonstrate the effectiveness of customizing deep models with bottleneck architectures,feature fusion,and optimization techniques in enhancing classification accuracy while reducing computational complexity.展开更多
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi...In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink.展开更多
In order to enhance the accuracy and efficiency of coal and gas outburst prediction,a novel approach combining Kernel Principal Component Analysis(KPCA)with an Improved Whale Optimization Algorithm(IWOA)optimized extr...In order to enhance the accuracy and efficiency of coal and gas outburst prediction,a novel approach combining Kernel Principal Component Analysis(KPCA)with an Improved Whale Optimization Algorithm(IWOA)optimized extreme learning machine(ELM)is proposed for precise forecasting of coal and gas outburst disasters in mines.Firstly,based on the influencing factors of coal and gas outburst disasters,nine coupling indexes are selected,including gas pressure,geological structure,initial velocity of gas emission,and coal structure type.The correlation between each index was analyzed using the Pearson correlation coefficient matrix in SPSS 27,followed by extraction of the principal components of the original data through Kernel Principal Component Analysis(KPCA).The Whale Optimization Algorithm(WOA)was enhanced by incorporating adaptive weight,variable helix position update,and optimal neighborhood disturbance to augment its performance.The improved Whale Optimization Algorithm(IWOA)is subsequently employed to optimize the weight Φ of the Extreme Learning Machine(ELM)input layer and the threshold g of the hidden layer,thereby enhancing its predictive accuracy and mitigating the issue of"over-fitting"associated with ELM to some extent.The principal components extracted by KPCA were utilized as input,while the outburst risk grade served as output.Subsequently,a comparative analysis was conducted between these results and those obtained from WOA-SVC,PSO-BPNN,and SSA-RF models.The IWOA-ELM model accurately predicts the risk grade of coal and gas outburst disasters,with results consistent with actual situations.Compared to other models tested,the model's performance showed an increase in Ac by 0.2,0.3,and 0.2 respectively;P increased by 0.15,0.2167,and 0.1333 respectively;R increased by 0.25,0.3,and 0.2333 respectively;F1-Score increased by 0.2031,0.2607,and 0.1864 respectively;Kappa coefficient k increased by 0.3226,0.4762 and 0.3175,respectively.The practicality and stability of the IWOAELM model were verified through its application in a coal mine in Shanxi Province where the predicted values exactly matched the actual values.This indicates that this model is more suitable for predicting coal and gas outburst disaster risks.展开更多
Coal spontaneous combustion fires threaten personal safety,increase carbon emissions,release toxic and harmful gases,and cause serious environmental pollution.The study of intelligent early warnings for coal spontaneo...Coal spontaneous combustion fires threaten personal safety,increase carbon emissions,release toxic and harmful gases,and cause serious environmental pollution.The study of intelligent early warnings for coal spontaneous combustion can advance fire prevention and control measures,making a meaningful contribution to the ecological and environmental protection in mining areas.To address the limitations in selecting characteristic index gases for coal spontaneous combustion and the low accuracy of traditional temperature prediction and discrimination models,an intelligent identification system was developed.The system integrates laboratory research and analysis,intelligent algorithm optimization,index rationality verification,and field measurement and application,all based on characteristic index gases.By constructing a dynamic discriminant model of coal self-gas temperature,the composite index of coal spontaneous combustion characteristics is further optimized and verified.Model performance was evaluated using root mean square error(RMSE),decision coefficient(R^(2)),mean absolute error(MAE),and mean absolute percentage error(MAPE).The prediction results for three,four,and five parameters were obtained.The results indicate that the R^(2) value was 0.9975 under the conditions of O_(2),CO,C_(2)H_(4),and CH_(4)/C_(2)H_(6),demonstrating the best model performance.The MAE was 1.9272,the RMSE was 2.5114,and the MAPE was 2.0830%.These findings enable optimal selection of self-ignition warning indicators for coal.A comparative analysis of the improved whale optimization(MSWOA-BP),gray wolf optimization(GWO-BP),standard whale optimization(WOA-BP),and particle swarm optimization(PSO-BP)models was performed to verify the universality of preferred feature indicators and the accuracy of prediction models.A comparative analysis between on-site measured temperatures and model-predicted temperatures demonstrated that the model exhibited high accuracy.This research provides a valuable reference for developing on-site coal spontaneous combustion warning systems,enabling efficient prediction and early warning,which are crucial for coal resource safety,efficient mining,and fire prevention.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.11872157 and 11532013)the graduate innovative research project of Heilongjiang University of Science and Technology(Grant No.YJSCX2020-214HKD).
文摘The current Whale Optimization Algorithm(WOA)has several drawbacks,such as slow convergence,low solution accuracy and easy to fall into the local optimal solution.To overcome these drawbacks,an improved Whale Optimization Algorithm(IWOA)is proposed in this study.IWOA can enhance the global search capability by two measures.First,the crossover and mutation operations in Differential Evolutionary algorithm(DE)are combined with the whale optimization algorithm.Second,the cloud adaptive inertia weight is introduced in the position update phase of WOA to divide the population into two subgroups,so as to balance the global search ability and local development ability.ANSYS and Matlab are used to establish the structure model.To demonstrate the application of the IWOA,truss structural optimizations on 52-bar plane truss and 25-bar space truss were performed,and the results were are compared with that obtained by other optimization algorithm.It is verified that,compared with WOA,the IWOA has higher efficiency,fast convergence speed,better solution accuracy and stability.So IWOA can be used in the optimization design of large truss structures.
基金supported by the Changzhou Science and Technology Support Project(CE20235045)Open Subject of Jiangsu Province Key Laboratory of Power Transmission and Distribution(2021JSSPD12)+1 种基金Talent Projects of Jiangsu University of Technology(KYY20018)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633).
文摘Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.
文摘Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.
基金supported by the Department of Education of Liaoning Province under Grant JDL2020020the Transportation Science and Technology Project of Liaoning Province under Grant 202243.
文摘In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network.
文摘Facial Expression Recognition(FER)has been an importantfield of research for several decades.Extraction of emotional characteristics is crucial to FERs,but is complex to process as they have significant intra-class variances.Facial characteristics have not been completely explored in static pictures.Previous studies used Convolution Neural Networks(CNNs)based on transfer learning and hyperparameter optimizations for static facial emotional recognitions.Particle Swarm Optimizations(PSOs)have also been used for tuning hyperparameters.However,these methods achieve about 92 percent in terms of accuracy.The existing algorithms have issues with FER accuracy and precision.Hence,the overall FER performance is degraded significantly.To address this issue,this work proposes a combination of CNNs and Long Short-Term Memories(LSTMs)called the HCNN-LSTMs(Hybrid CNNs and LSTMs)approach for FERs.The work is evaluated on the benchmark dataset,Facial Expression Recog Image Ver(FERC).Viola-Jones(VJ)algorithms recognize faces from preprocessed images followed by HCNN-LSTMs feature extractions and FER classifications.Further,the success rate of Deep Learning Techniques(DLTs)has increased with hyperparameter tunings like epochs,batch sizes,initial learning rates,regularization parameters,shuffling types,and momentum.This proposed work uses Improved Weight based Whale Optimization Algorithms(IWWOAs)to select near-optimal settings for these parameters using bestfitness values.The experi-mentalfindings demonstrated that the proposed HCNN-LSTMs system outper-forms the existing methods.
基金supported by Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia through the Researchers Supporting Project PNURSP2025R333.
文摘Diagnosing gastrointestinal tract diseases is a critical task requiring accurate and efficient methodologies.While deep learning models have significantly advanced medical image analysis,challenges such as imbalanced datasets and redundant features persist.This study proposes a novel framework that customizes two deep learning models,NasNetMobile and ResNet50,by incorporating bottleneck architectures,named as NasNeck and ResNeck,to enhance feature extraction.The feature vectors are fused into a combined vector,which is further optimized using an improved Whale Optimization Algorithm to minimize redundancy and improve discriminative power.The optimized feature vector is then classified using artificial neural network classifiers,effectively addressing the limitations of traditional methods.Data augmentation techniques are employed to tackle class imbalance,improving model learning and generalization.The proposed framework was evaluated on two publicly available datasets:Hyper-Kvasir and Kvasir v2.The Hyper-Kvasir dataset,comprising 23 gastrointestinal disease classes,yielded an impressive 96.0%accuracy.On the Kvasir v2 dataset,which contains 8 distinct classes,the framework achieved a remarkable 98.9%accuracy,further demonstrating its robustness and superior classification performance across different gastrointestinal datasets.The results demonstrate the effectiveness of customizing deep models with bottleneck architectures,feature fusion,and optimization techniques in enhancing classification accuracy while reducing computational complexity.
基金supported in part by the National Natural Science Foundation of China(No.61973078)in part by the Natural Science Foundation of Jiangsu Province of China(No.BK20231416)in part by the Zhishan Youth Scholar Program from Southeast University(No.2242022R40042)。
文摘In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink.
基金supported by the National Natural Science Foun-dation of China (No.52174188)the Graduate Education Innovation Project of Shanxi Datong University of China (No.23CX49).
文摘In order to enhance the accuracy and efficiency of coal and gas outburst prediction,a novel approach combining Kernel Principal Component Analysis(KPCA)with an Improved Whale Optimization Algorithm(IWOA)optimized extreme learning machine(ELM)is proposed for precise forecasting of coal and gas outburst disasters in mines.Firstly,based on the influencing factors of coal and gas outburst disasters,nine coupling indexes are selected,including gas pressure,geological structure,initial velocity of gas emission,and coal structure type.The correlation between each index was analyzed using the Pearson correlation coefficient matrix in SPSS 27,followed by extraction of the principal components of the original data through Kernel Principal Component Analysis(KPCA).The Whale Optimization Algorithm(WOA)was enhanced by incorporating adaptive weight,variable helix position update,and optimal neighborhood disturbance to augment its performance.The improved Whale Optimization Algorithm(IWOA)is subsequently employed to optimize the weight Φ of the Extreme Learning Machine(ELM)input layer and the threshold g of the hidden layer,thereby enhancing its predictive accuracy and mitigating the issue of"over-fitting"associated with ELM to some extent.The principal components extracted by KPCA were utilized as input,while the outburst risk grade served as output.Subsequently,a comparative analysis was conducted between these results and those obtained from WOA-SVC,PSO-BPNN,and SSA-RF models.The IWOA-ELM model accurately predicts the risk grade of coal and gas outburst disasters,with results consistent with actual situations.Compared to other models tested,the model's performance showed an increase in Ac by 0.2,0.3,and 0.2 respectively;P increased by 0.15,0.2167,and 0.1333 respectively;R increased by 0.25,0.3,and 0.2333 respectively;F1-Score increased by 0.2031,0.2607,and 0.1864 respectively;Kappa coefficient k increased by 0.3226,0.4762 and 0.3175,respectively.The practicality and stability of the IWOAELM model were verified through its application in a coal mine in Shanxi Province where the predicted values exactly matched the actual values.This indicates that this model is more suitable for predicting coal and gas outburst disaster risks.
基金supported by the National Natural Science Foundation of China(Nos.52374219,51904172,and 42107284)the Shandong Provincial Natural Science Foundation(No.ZR2023ME115)+2 种基金the Qing Chuang Science and Technology Program of Shandong Province University(Nos.2023KJ086 and 2021RW030)the Opening Foundation of Key Laboratory of Xinjiang Coal Resources Green Mining(Xinjiang Institute of Engineering),Ministry of Education(No.KLXGYKB2501)the Fundamental Research Funds for the Central Universities(No.2024–11044)
文摘Coal spontaneous combustion fires threaten personal safety,increase carbon emissions,release toxic and harmful gases,and cause serious environmental pollution.The study of intelligent early warnings for coal spontaneous combustion can advance fire prevention and control measures,making a meaningful contribution to the ecological and environmental protection in mining areas.To address the limitations in selecting characteristic index gases for coal spontaneous combustion and the low accuracy of traditional temperature prediction and discrimination models,an intelligent identification system was developed.The system integrates laboratory research and analysis,intelligent algorithm optimization,index rationality verification,and field measurement and application,all based on characteristic index gases.By constructing a dynamic discriminant model of coal self-gas temperature,the composite index of coal spontaneous combustion characteristics is further optimized and verified.Model performance was evaluated using root mean square error(RMSE),decision coefficient(R^(2)),mean absolute error(MAE),and mean absolute percentage error(MAPE).The prediction results for three,four,and five parameters were obtained.The results indicate that the R^(2) value was 0.9975 under the conditions of O_(2),CO,C_(2)H_(4),and CH_(4)/C_(2)H_(6),demonstrating the best model performance.The MAE was 1.9272,the RMSE was 2.5114,and the MAPE was 2.0830%.These findings enable optimal selection of self-ignition warning indicators for coal.A comparative analysis of the improved whale optimization(MSWOA-BP),gray wolf optimization(GWO-BP),standard whale optimization(WOA-BP),and particle swarm optimization(PSO-BP)models was performed to verify the universality of preferred feature indicators and the accuracy of prediction models.A comparative analysis between on-site measured temperatures and model-predicted temperatures demonstrated that the model exhibited high accuracy.This research provides a valuable reference for developing on-site coal spontaneous combustion warning systems,enabling efficient prediction and early warning,which are crucial for coal resource safety,efficient mining,and fire prevention.