期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进双目ORB-SLAM3的特征匹配算法 被引量:1
1
作者 伞红军 冯金祥 +2 位作者 陈久朋 彭真 赵龙云 《农业机械学报》 北大核心 2025年第5期625-634,共10页
针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-S... 针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-SLAM3立体匹配中引入自适应加权SAD-Census算法,通过考虑像素之间的几何距离,重新计算SAD值并与Census算法相融合来提高特征匹配稳定性和精度,同时加入自适应的SAD窗口滑动范围进一步扩大搜索距离,进而筛选出正确的匹配来提高系统精度。在EuRoC数据集和真实室内场景中进行实验,结果表明与改进前ORB-SLAM3算法相比,在数据集下改进算法定位精度提高23.32%,真实环境中提高近50%,从而验证了改进算法可行性和有效性。 展开更多
关键词 改进双目ORB-SLAM3 特征匹配 最近邻匹配算法 自适应加权SAD-Census算法
在线阅读 下载PDF
基于改进WKNN的CSI被动室内指纹定位方法
2
作者 邵小强 马博 +3 位作者 韩泽辉 杨永德 原泽文 李鑫 《吉林大学学报(工学版)》 北大核心 2025年第7期2444-2454,共11页
针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的... 针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的幅相信息共同作为指纹数据,构造与参考点位置信息相关的稳定指纹数据库。在线阶段,提出改进的加权K近邻算法,对估计坐标进行重复匹配,该算法在一次匹配中得到位置坐标后,求该位置坐标在K个近邻点间的欧氏距离,并使用高斯变换对K个距离值进行权重计算,完成人员的定位。分别在教室和大厅进行实验模拟测试,实验结果表明:采用本文算法约81%的测试位置误差控制在1 m以内,可以有效提高定位精度。 展开更多
关键词 室内定位 信道状态信息 被动定位 改进阈值的小波域去噪 改进的加权K近邻算法 高斯变换
原文传递
An Adaptive Multivariate EWMA Control Chart for Monitoring Missing Data 被引量:1
3
作者 PU Xiaolong XIANG Dongdong CHEN Xinyan 《应用概率统计》 CSCD 北大核心 2024年第2期343-363,共21页
With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on t... With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on the assumption of complete data obtained at uniform time intervals,exhibit suboptimal performance in the presence of missing data.In our pursuit of maximizing available information,we propose an adaptive exponentially weighted moving average(EWMA)control chart employing a weighted imputation approach that leverages the relationships between complete and incomplete data.Specifically,we introduce two recovery methods:an improved K-Nearest Neighbors imputing value and the conventional univariate EWMA statistic.We then formulate an adaptive weighting function to amalgamate these methods,assigning a diminished weight to the EWMA statistic when the sample information suggests an increased likelihood of the process being out of control,and vice versa.The robustness and sensitivity of the proposed scheme are shown through simulation results and an illustrative example. 展开更多
关键词 online monitoring completely random missing weighted imputing values EWMA improved k-nearest neighbors
在线阅读 下载PDF
文本分类的几种方法研究 被引量:1
4
作者 沙俐敏 《南方冶金学院学报》 2004年第1期50-54,共5页
经过训练和统计对每一类文本形成特征的权重向量,利用K-最近距离的方法对测试集进行分类.Sleepingexpert算法采用正权重和负权重较好地描述了多义词的特性,该文在原算法中插入了一种权重补偿模块,其目标是实现权重和当前概念的一致性,... 经过训练和统计对每一类文本形成特征的权重向量,利用K-最近距离的方法对测试集进行分类.Sleepingexpert算法采用正权重和负权重较好地描述了多义词的特性,该文在原算法中插入了一种权重补偿模块,其目标是实现权重和当前概念的一致性,具有更好的分类性能. 展开更多
关键词 文本分类 基于K-最近距离 SLEEPING EXPERT 概念推理网 权重
在线阅读 下载PDF
A Two-Stage Vehicle Type Recognition Method Combining the Most Effective Gabor Features 被引量:6
5
作者 Wei Sun Xiaorui Zhang +2 位作者 Xiaozheng He Yan Jin Xu Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第12期2489-2510,共22页
Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illuminatio... Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illumination change,partial occlusion under real traffic environment.These difficulties limit the performance of current state-of-art methods,which are typically based on single-stage classification without considering feature availability.To address such difficulties,this paper proposes a two-stage vehicle type recognition method combining the most effective Gabor features.The first stage leverages edge features to classify vehicles by size into big or small via a similarity k-nearest neighbor classifier(SKNNC).Further the more specific vehicle type such as bus,truck,sedan or van is recognized by the second stage classification,which leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels on the partitioned key patches via a kernel sparse representation-based classifier(KSRC).A verification and correction step based on minimum residual analysis is proposed to enhance the reliability of the VTR.To improve VTR efficiency,the most effective Gabor features are selected through gray relational analysis that leverages the correlation between Gabor feature image and the original image.Experimental results demonstrate that the proposed method not only improves the accuracy of VTR but also enhances the recognition robustness to illumination change and partial occlusion. 展开更多
关键词 Vehicle type recognition improved Canny algorithm Gabor filter k-nearest neighbor classification grey relational analysis kernel sparse representation two-stage classification
在线阅读 下载PDF
基于CSI的改进KNN室内定位方法 被引量:10
6
作者 党小超 马平川 郝占军 《传感器与微系统》 CSCD 2019年第10期51-53,共3页
为了解决基于接收信号强度指示(RSSI)的室内定位方法定位精度低和稳定性差等问题,提出了一种基于信道状态信息(CSI)的无源室内定位算法。该算法使用卡尔曼滤波处理原始CSI信号,结合高斯径向基核函数加权的K邻近算法(RBF-KNN)与置信度空... 为了解决基于接收信号强度指示(RSSI)的室内定位方法定位精度低和稳定性差等问题,提出了一种基于信道状态信息(CSI)的无源室内定位算法。该算法使用卡尔曼滤波处理原始CSI信号,结合高斯径向基核函数加权的K邻近算法(RBF-KNN)与置信度空间进行室内定位。实验结果表明:该方法精度高于其他算法。 展开更多
关键词 信道状态信息 指纹定位 卡尔曼滤波 改进加权K邻近算法 置信度水平
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部