With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on t...With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on the assumption of complete data obtained at uniform time intervals,exhibit suboptimal performance in the presence of missing data.In our pursuit of maximizing available information,we propose an adaptive exponentially weighted moving average(EWMA)control chart employing a weighted imputation approach that leverages the relationships between complete and incomplete data.Specifically,we introduce two recovery methods:an improved K-Nearest Neighbors imputing value and the conventional univariate EWMA statistic.We then formulate an adaptive weighting function to amalgamate these methods,assigning a diminished weight to the EWMA statistic when the sample information suggests an increased likelihood of the process being out of control,and vice versa.The robustness and sensitivity of the proposed scheme are shown through simulation results and an illustrative example.展开更多
Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illuminatio...Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illumination change,partial occlusion under real traffic environment.These difficulties limit the performance of current state-of-art methods,which are typically based on single-stage classification without considering feature availability.To address such difficulties,this paper proposes a two-stage vehicle type recognition method combining the most effective Gabor features.The first stage leverages edge features to classify vehicles by size into big or small via a similarity k-nearest neighbor classifier(SKNNC).Further the more specific vehicle type such as bus,truck,sedan or van is recognized by the second stage classification,which leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels on the partitioned key patches via a kernel sparse representation-based classifier(KSRC).A verification and correction step based on minimum residual analysis is proposed to enhance the reliability of the VTR.To improve VTR efficiency,the most effective Gabor features are selected through gray relational analysis that leverages the correlation between Gabor feature image and the original image.Experimental results demonstrate that the proposed method not only improves the accuracy of VTR but also enhances the recognition robustness to illumination change and partial occlusion.展开更多
文摘With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on the assumption of complete data obtained at uniform time intervals,exhibit suboptimal performance in the presence of missing data.In our pursuit of maximizing available information,we propose an adaptive exponentially weighted moving average(EWMA)control chart employing a weighted imputation approach that leverages the relationships between complete and incomplete data.Specifically,we introduce two recovery methods:an improved K-Nearest Neighbors imputing value and the conventional univariate EWMA statistic.We then formulate an adaptive weighting function to amalgamate these methods,assigning a diminished weight to the EWMA statistic when the sample information suggests an increased likelihood of the process being out of control,and vice versa.The robustness and sensitivity of the proposed scheme are shown through simulation results and an illustrative example.
基金supported in part by the National Natural Science Foundation of China(Nos.61304205 and 61502240)the Natural Science Foundation of Jiangsu Province(BK20191401)the Innovation and Entrepreneurship Training Project of College Students(202010300290,202010300211,202010300116E).
文摘Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illumination change,partial occlusion under real traffic environment.These difficulties limit the performance of current state-of-art methods,which are typically based on single-stage classification without considering feature availability.To address such difficulties,this paper proposes a two-stage vehicle type recognition method combining the most effective Gabor features.The first stage leverages edge features to classify vehicles by size into big or small via a similarity k-nearest neighbor classifier(SKNNC).Further the more specific vehicle type such as bus,truck,sedan or van is recognized by the second stage classification,which leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels on the partitioned key patches via a kernel sparse representation-based classifier(KSRC).A verification and correction step based on minimum residual analysis is proposed to enhance the reliability of the VTR.To improve VTR efficiency,the most effective Gabor features are selected through gray relational analysis that leverages the correlation between Gabor feature image and the original image.Experimental results demonstrate that the proposed method not only improves the accuracy of VTR but also enhances the recognition robustness to illumination change and partial occlusion.