Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability...Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.展开更多
A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clo...A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage.展开更多
In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering c...In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering clothing image segmentation algorithm is a common method in the process of clothing image extraction.However,the traditional model requires high computing power and is easily affected by the initial center of clustering.It often falls into local optimization.Aiming at the above two points,an improved spectral clustering clothing image segmentation algorithm is proposed in this paper.The Nystrom approximation strategy is introduced into the spectral mapping process to reduce the computational complexity.In the clustering stage,this algorithm uses the global optimization advantage of the particle swarm optimization algorithm and selects the sparrow search algorithm to search the optimal initial clustering point,to effectively avoid the occurrence of local optimization.In the end,the effectiveness of this algorithm is verified on clothing images in each environment.展开更多
Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In...Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In this paper, a CF recommendation algorithm is propose based on the latent factor model and improved spectral clustering (CFRALFMISC) to improve the forecasting precision. The latent factor model was firstly adopted to predict the missing score. Then, the cluster validity index was used to determine the number of clusters. Finally, the spectral clustering was improved by using the FCM algorithm to replace the K-means in the spectral clustering. The simulation results show that CFRALFMISC can effectively improve the recommendation precision compared with other algorithms.展开更多
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri...The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.展开更多
In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral ...In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucia...Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucial for enhancing the stability of the collaborative environment. In this paper, the problem for clustering is innovatively transformed into a cutting graph problem. A novel clustering algorithm based on the Spectral Clustering algorithm and the improved force-directed algorithm is designed. It takes the average lifetime of all clusters as an optimization goal so that the stability of the entire system can be enhanced. A series of close-to-practical scenarios are generated by the Simulation of Urban Mobility(SUMO). The numerical results indicate that our approach has superior performance in maintaining whole cluster stability.展开更多
道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合...道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合确定困难导致聚类效果欠佳,因此,提出了一种基于改进DBSCAN的道路障碍物点云聚类方法 .首先,在确定Eps领域时利用孤立核函数来改进传统的距离度量方式,提高了DBSCAN聚类对不同密度区域的适应性和准确性.其次,针对猎豹优化算法(Cheetah Optimizer,CO)在信息共享和迭代更新方面的不足,提出了一种基于及时更新机制与兼容度量策略的CO优化算法(Timely Updating Mechanisms and Compatible Metric Strategies for CO Algorithms,TCCO),通过实时更新操作确保每次迭代的优秀信息得到及时沟通共享,并在全局更新时基于非支配排序与拥挤距离优化淘汰机制,平衡全局搜索和局部开发能力,提高了收敛速度和收敛精度.最后,利用孤立度量改进Eps领域,并利用TCCO优化DBSCAN聚类,自适应确定参数,提高了聚类精度和效率.在八个UCI数据集上进行测试,仿真结果表明,提出的TCCO-DBSCAN算法与CO-DBSCAN,SSA-DBSCAN,DBSCAN,KMC方法相比,F-Measure,ARI,NMI指标均有明显提升,且聚类精度更优.通过激光雷达点云数据障碍物聚类的实验验证,证明TCCO-DBSCAN能够有效地适应点云数据密度变化,获得更好的道路障碍物聚类效果,为辅助驾驶中障碍物检测提供支持.展开更多
This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels fro...This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels from a given image.Secondly,the data is clustered in spectral space of the similar matrix of the set points,in order to avoid the drawbacks of K-means algorithm in the conventional spectral clustering method that is sensitive to initial clustering centroids and convergence to local optimal solution,we introduce the clone operator,Cauthy mutation to enlarge the scale of clustering centers,quantum-inspired evolutionary algorithm to find the global optimal clustering centroids.Compared with phishing web image segmentation based on K-means,experimental results show that the segmentation performance of our method gains much improvement.Moreover,our method can convergence to global optimal solution and is better in accuracy of phishing web segmentation.展开更多
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th...Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.展开更多
Clustering analysis plays a very important role in the field of data mining,image segmentation and pattern recognition.The method of cluster analysis is introduced to analyze NetEYun music data.In addition,different t...Clustering analysis plays a very important role in the field of data mining,image segmentation and pattern recognition.The method of cluster analysis is introduced to analyze NetEYun music data.In addition,different types of music data are clustered to find the commonness among the same kind of music.A music data-oriented clustering analysis method is proposed:Firstly,the audio beat period is calculated by reading the audio file data,and the emotional features of the audio are extracted;Secondly,the audio beat period is calculated by Fourier transform.Finally,a clustering algorithm is designed to obtain the clustering results of music data.展开更多
文摘Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.
基金funded by the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B1111200001)the Key project of monitoring,early warning and prevention of major natural disasters of China(Grant No.2019YFC1510304)+1 种基金the S&T Program of Hebei(Grant No.19275408D)the Scientific Research Projects of Weather Modification in Northwest China(Grant No.RYSY201905).
文摘A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage.
文摘In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering clothing image segmentation algorithm is a common method in the process of clothing image extraction.However,the traditional model requires high computing power and is easily affected by the initial center of clustering.It often falls into local optimization.Aiming at the above two points,an improved spectral clustering clothing image segmentation algorithm is proposed in this paper.The Nystrom approximation strategy is introduced into the spectral mapping process to reduce the computational complexity.In the clustering stage,this algorithm uses the global optimization advantage of the particle swarm optimization algorithm and selects the sparrow search algorithm to search the optimal initial clustering point,to effectively avoid the occurrence of local optimization.In the end,the effectiveness of this algorithm is verified on clothing images in each environment.
基金the National Natural Science Foundation of China (Grant No. 61762031)Guangxi Key Research and Development Plan (Gui Science AB17195029, Gui Science AB18126006)+3 种基金Guangxi key Laboratory Fund of Embedded Technology and Intelligent System, 2017 Innovation Project of Guangxi Graduate Education (No. YCSW2017156)2018 Innovation Project of Guangxi Graduate Education (No. YCSW2018157)Subsidies for the Project of Promoting the Ability of Young and Middleaged Scientific Research in Universities and Colleges of Guangxi (KY2016YB184)2016 Guilin Science and Technology Project (Gui Science 2016010202).
文摘Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In this paper, a CF recommendation algorithm is propose based on the latent factor model and improved spectral clustering (CFRALFMISC) to improve the forecasting precision. The latent factor model was firstly adopted to predict the missing score. Then, the cluster validity index was used to determine the number of clusters. Finally, the spectral clustering was improved by using the FCM algorithm to replace the K-means in the spectral clustering. The simulation results show that CFRALFMISC can effectively improve the recommendation precision compared with other algorithms.
基金This work was supported by the National Natural Science Foundation of China(61903086,61903366,62001115)the Natural Science Foundation of Hunan Province(2019JJ50745,2020JJ4280,2021JJ40133)the Fundamentals and Basic of Applications Research Foundation of Guangdong Province(2019A1515110136).
文摘The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.
基金Supported by the National Natural Science Foundation of China (60661003)the Research Project Department of Education of Jiangxi Province (GJJ10566)
文摘In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
基金supported in part by National Key R&D Program of China under Grant 2018YFB1800800National NSF of China under Grant 61827801,61801218+2 种基金by the open research fund of Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space(Nanjing Univ.Aeronaut.Astronaut.)(No.KF20181913)in part by the Natural Science Foundation of Jiangsu Province under Grant BK20180420by the Open Foundation for Graduate Innovation of NUAA(Grant NO.kfjj20190417).
文摘Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucial for enhancing the stability of the collaborative environment. In this paper, the problem for clustering is innovatively transformed into a cutting graph problem. A novel clustering algorithm based on the Spectral Clustering algorithm and the improved force-directed algorithm is designed. It takes the average lifetime of all clusters as an optimization goal so that the stability of the entire system can be enhanced. A series of close-to-practical scenarios are generated by the Simulation of Urban Mobility(SUMO). The numerical results indicate that our approach has superior performance in maintaining whole cluster stability.
文摘道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合确定困难导致聚类效果欠佳,因此,提出了一种基于改进DBSCAN的道路障碍物点云聚类方法 .首先,在确定Eps领域时利用孤立核函数来改进传统的距离度量方式,提高了DBSCAN聚类对不同密度区域的适应性和准确性.其次,针对猎豹优化算法(Cheetah Optimizer,CO)在信息共享和迭代更新方面的不足,提出了一种基于及时更新机制与兼容度量策略的CO优化算法(Timely Updating Mechanisms and Compatible Metric Strategies for CO Algorithms,TCCO),通过实时更新操作确保每次迭代的优秀信息得到及时沟通共享,并在全局更新时基于非支配排序与拥挤距离优化淘汰机制,平衡全局搜索和局部开发能力,提高了收敛速度和收敛精度.最后,利用孤立度量改进Eps领域,并利用TCCO优化DBSCAN聚类,自适应确定参数,提高了聚类精度和效率.在八个UCI数据集上进行测试,仿真结果表明,提出的TCCO-DBSCAN算法与CO-DBSCAN,SSA-DBSCAN,DBSCAN,KMC方法相比,F-Measure,ARI,NMI指标均有明显提升,且聚类精度更优.通过激光雷达点云数据障碍物聚类的实验验证,证明TCCO-DBSCAN能够有效地适应点云数据密度变化,获得更好的道路障碍物聚类效果,为辅助驾驶中障碍物检测提供支持.
基金Supported by the Fundamental Research Funds for the Central Universities in North China Electric Power University(11MG13)the Natural Science Foundation of Hebei Province(F2011502038)
文摘This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels from a given image.Secondly,the data is clustered in spectral space of the similar matrix of the set points,in order to avoid the drawbacks of K-means algorithm in the conventional spectral clustering method that is sensitive to initial clustering centroids and convergence to local optimal solution,we introduce the clone operator,Cauthy mutation to enlarge the scale of clustering centers,quantum-inspired evolutionary algorithm to find the global optimal clustering centroids.Compared with phishing web image segmentation based on K-means,experimental results show that the segmentation performance of our method gains much improvement.Moreover,our method can convergence to global optimal solution and is better in accuracy of phishing web segmentation.
文摘Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.
基金Thisre search was partially supported by the National Natural Science Foundation of China(grant 62076215)the Talent Introduction Project of Yancheng Institute of Technology under Grant No.XKR2011019.
文摘Clustering analysis plays a very important role in the field of data mining,image segmentation and pattern recognition.The method of cluster analysis is introduced to analyze NetEYun music data.In addition,different types of music data are clustered to find the commonness among the same kind of music.A music data-oriented clustering analysis method is proposed:Firstly,the audio beat period is calculated by reading the audio file data,and the emotional features of the audio are extracted;Secondly,the audio beat period is calculated by Fourier transform.Finally,a clustering algorithm is designed to obtain the clustering results of music data.