期刊文献+
共找到593篇文章
< 1 2 30 >
每页显示 20 50 100
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
1
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) improved Whale Optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Identification of Convective and Stratiform Clouds Based on the Improved DBSCAN Clustering Algorithm 被引量:6
2
作者 Yuanyuan ZUO Zhiqun HU +3 位作者 Shujie YUAN Jiafeng ZHENG Xiaoyan YIN Boyong LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2203-2212,共10页
A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clo... A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage. 展开更多
关键词 improved DBscaN clustering algorithm cloud identification and classification 2D model 3D model weather radar
在线阅读 下载PDF
Improved Spectral Clustering Clothing Image Segmentation Algorithm Based on Sparrow Search Algorithm 被引量:2
3
作者 HUANG Wenan QIAN Suqin 《Journal of Donghua University(English Edition)》 CAS 2022年第4期340-344,共5页
In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering c... In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering clothing image segmentation algorithm is a common method in the process of clothing image extraction.However,the traditional model requires high computing power and is easily affected by the initial center of clustering.It often falls into local optimization.Aiming at the above two points,an improved spectral clustering clothing image segmentation algorithm is proposed in this paper.The Nystrom approximation strategy is introduced into the spectral mapping process to reduce the computational complexity.In the clustering stage,this algorithm uses the global optimization advantage of the particle swarm optimization algorithm and selects the sparrow search algorithm to search the optimal initial clustering point,to effectively avoid the occurrence of local optimization.In the end,the effectiveness of this algorithm is verified on clothing images in each environment. 展开更多
关键词 clothing segmentation spectral clustering particle swarm optimization algorithm intelligent fashion design
在线阅读 下载PDF
Collaboration Filtering Recommendation Algorithm Based on the Latent Factor Model and Improved Spectral Clustering
4
作者 Xiaolan Xie Mengnan Qiu 《国际计算机前沿大会会议论文集》 2019年第1期98-100,共3页
Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In... Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In this paper, a CF recommendation algorithm is propose based on the latent factor model and improved spectral clustering (CFRALFMISC) to improve the forecasting precision. The latent factor model was firstly adopted to predict the missing score. Then, the cluster validity index was used to determine the number of clusters. Finally, the spectral clustering was improved by using the FCM algorithm to replace the K-means in the spectral clustering. The simulation results show that CFRALFMISC can effectively improve the recommendation precision compared with other algorithms. 展开更多
关键词 COLLABORATION FILTERING RECOMMENDATION algorithm LATENT Factor Model CLUSTER validity index spectral clustering
在线阅读 下载PDF
System error iterative identification for underwater positioning based on spectral clustering
5
作者 LU Yu WANG Jiongqi +3 位作者 HE Zhangming ZHOU Haiyin XING Yao ZHOU Xuanying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1028-1041,共14页
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri... The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning. 展开更多
关键词 acoustic positioning reduced parameter system error identification improved spectral clustering accuracy analy-sis
在线阅读 下载PDF
Adaptive Spectral Clustering Ensemble Selection via Resampling and Population-Based Incremental Learning Algorithm 被引量:5
6
作者 XU Yuanchun JIA Jianhua 《Wuhan University Journal of Natural Sciences》 CAS 2011年第3期228-236,共9页
In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral ... In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large. 展开更多
关键词 spectral clustering clustering ensemble selective ensemble RESAMPLING population-based incremental learning algorithm (PBIL) data clustering
原文传递
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:3
7
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization improved PSO algorithm
在线阅读 下载PDF
基于DBSCAN聚类的CCUS管网布局优化方法
8
作者 赵东亚 黄启展 +3 位作者 邢玉鹏 章旎 于徽 许保珅 《新疆石油天然气》 2025年第3期50-60,共11页
为减少CO_(2)排放,减缓气候变化,碳捕集、利用和封存(CCUS)技术受到了广泛关注。由于项目投资较大且不易变更,CCUS技术的推广和应用受到了极大限制。目前系统化的源汇匹配已成为研究重点,科学、有效的源汇匹配可优化管网设计,降低CCUS... 为减少CO_(2)排放,减缓气候变化,碳捕集、利用和封存(CCUS)技术受到了广泛关注。由于项目投资较大且不易变更,CCUS技术的推广和应用受到了极大限制。目前系统化的源汇匹配已成为研究重点,科学、有效的源汇匹配可优化管网设计,降低CCUS全流程成本。提出了一种基于密度的具有噪声的聚类算法(DBSCAN)优化CCUS管网布局,为CCUS管网设计提供解决方案。首先应用DBSCAN算法对源和汇进行聚类处理;然后在充分考虑源汇性质、各环节成本等因素基础上,基于最小支撑树法构建CCUS源汇匹配模型,得到CCUS源汇匹配理论方案;最后针对多源共汇导致的管网冗余问题,应用改进的节约里程法优化CCUS源汇匹配方案。以假定规划区为例开展研究,结果表明所提模型不仅能够降低CCUS部署成本,还能大幅缩短运输距离。相较于传统方案,部署总成本由1.3×10^(7)万元降至9.8×10^(6)万元,降幅约为24.6%;运输距离由4075 km减少至1008 km,降幅达75.3%。研究验证了所提方法在复杂CCUS场景中的适应性与经济性,为CCUS系统规划提供了可行的优化路径和理论参考。 展开更多
关键词 源汇匹配 CCUS 最小支撑树法 改进的节约里程法 DBscaN聚类
在线阅读 下载PDF
Enhancing Clustering Stability in VANET: A Spectral Clustering Based Approach 被引量:5
9
作者 Gang Liu Nan Qi +2 位作者 Jiaxin Chen Chao Dong Zanqi Huang 《China Communications》 SCIE CSCD 2020年第4期140-151,共12页
Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucia... Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucial for enhancing the stability of the collaborative environment. In this paper, the problem for clustering is innovatively transformed into a cutting graph problem. A novel clustering algorithm based on the Spectral Clustering algorithm and the improved force-directed algorithm is designed. It takes the average lifetime of all clusters as an optimization goal so that the stability of the entire system can be enhanced. A series of close-to-practical scenarios are generated by the Simulation of Urban Mobility(SUMO). The numerical results indicate that our approach has superior performance in maintaining whole cluster stability. 展开更多
关键词 VANET spectral clustering force-directed algorithm WHOLE CLUSTER STABILITY
在线阅读 下载PDF
基于改进DBSCAN算法的道路障碍物点云聚类
10
作者 吴超凡 黄鹤 +3 位作者 贾睿 杨澜 王会峰 高涛 《南京大学学报(自然科学版)》 北大核心 2025年第5期738-751,共14页
道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合... 道路点云数据的障碍物检测技术在智能交通系统和自动驾驶中至关重要.传统的基于密度的空间聚类(DensityBased Spatial Clustering of Applications with Noise,DBSCAN)算法在处理高维或不同密度区域数据时,由于距离度量低效、参数组合确定困难导致聚类效果欠佳,因此,提出了一种基于改进DBSCAN的道路障碍物点云聚类方法 .首先,在确定Eps领域时利用孤立核函数来改进传统的距离度量方式,提高了DBSCAN聚类对不同密度区域的适应性和准确性.其次,针对猎豹优化算法(Cheetah Optimizer,CO)在信息共享和迭代更新方面的不足,提出了一种基于及时更新机制与兼容度量策略的CO优化算法(Timely Updating Mechanisms and Compatible Metric Strategies for CO Algorithms,TCCO),通过实时更新操作确保每次迭代的优秀信息得到及时沟通共享,并在全局更新时基于非支配排序与拥挤距离优化淘汰机制,平衡全局搜索和局部开发能力,提高了收敛速度和收敛精度.最后,利用孤立度量改进Eps领域,并利用TCCO优化DBSCAN聚类,自适应确定参数,提高了聚类精度和效率.在八个UCI数据集上进行测试,仿真结果表明,提出的TCCO-DBSCAN算法与CO-DBSCAN,SSA-DBSCAN,DBSCAN,KMC方法相比,F-Measure,ARI,NMI指标均有明显提升,且聚类精度更优.通过激光雷达点云数据障碍物聚类的实验验证,证明TCCO-DBSCAN能够有效地适应点云数据密度变化,获得更好的道路障碍物聚类效果,为辅助驾驶中障碍物检测提供支持. 展开更多
关键词 DBscaN聚类 孤立核函数 改进猎豹优化算法 障碍物点云聚类
在线阅读 下载PDF
PHISHING WEB IMAGE SEGMENTATION BASED ON IMPROVING SPECTRAL CLUSTERING 被引量:1
11
作者 Li Yuancheng Zhao Liujun Jiao Runhai 《Journal of Electronics(China)》 2011年第1期101-107,共7页
This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels fro... This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels from a given image.Secondly,the data is clustered in spectral space of the similar matrix of the set points,in order to avoid the drawbacks of K-means algorithm in the conventional spectral clustering method that is sensitive to initial clustering centroids and convergence to local optimal solution,we introduce the clone operator,Cauthy mutation to enlarge the scale of clustering centers,quantum-inspired evolutionary algorithm to find the global optimal clustering centroids.Compared with phishing web image segmentation based on K-means,experimental results show that the segmentation performance of our method gains much improvement.Moreover,our method can convergence to global optimal solution and is better in accuracy of phishing web segmentation. 展开更多
关键词 spectral clustering algorithm CLONAL MUTATION Quantum-inspired Evolutionary algorithm(QEA) Phishing web image segmentation
在线阅读 下载PDF
Fuzzy Fruit Fly Optimized Node Quality-Based Clustering Algorithm for Network Load Balancing
12
作者 P.Rahul N.Kanthimathi +1 位作者 B.Kaarthick M.Leeban Moses 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1583-1600,共18页
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th... Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc. 展开更多
关键词 Ad-hoc load balancing H-MANET fuzzy logic system genetic algorithm node quality-based clustering algorithm improved weighted clustering fruitfly optimization
在线阅读 下载PDF
A Clustering Analysis Method for Massive Music Data
13
作者 Yanping Xu Sen Xu 《Modern Electronic Technology》 2021年第1期24-31,共8页
Clustering analysis plays a very important role in the field of data mining,image segmentation and pattern recognition.The method of cluster analysis is introduced to analyze NetEYun music data.In addition,different t... Clustering analysis plays a very important role in the field of data mining,image segmentation and pattern recognition.The method of cluster analysis is introduced to analyze NetEYun music data.In addition,different types of music data are clustered to find the commonness among the same kind of music.A music data-oriented clustering analysis method is proposed:Firstly,the audio beat period is calculated by reading the audio file data,and the emotional features of the audio are extracted;Secondly,the audio beat period is calculated by Fourier transform.Finally,a clustering algorithm is designed to obtain the clustering results of music data. 展开更多
关键词 spectral clustering algorithm K-mean Music similarity Audio period extraction
在线阅读 下载PDF
基于改进DBSCAN省级电力物资仓库聚类的配送车辆路径优化研究
14
作者 蒋正骅 高瞻 +2 位作者 王刘俊 朱铭达 陈达强 《物流工程与管理》 2024年第5期13-17,55,共6页
鉴于电力物资仓库分布点过多且较为分散,其多起点路径配送优化问题比较复杂,文中提出了一种改进DBSCAN聚类算法来简化电力物资多仓库配送车辆路径的两阶段方法。首先,将区域所有仓库进行聚类划分,得到若干个仓库簇,由此将多起点路径配... 鉴于电力物资仓库分布点过多且较为分散,其多起点路径配送优化问题比较复杂,文中提出了一种改进DBSCAN聚类算法来简化电力物资多仓库配送车辆路径的两阶段方法。首先,将区域所有仓库进行聚类划分,得到若干个仓库簇,由此将多起点路径配送优化问题转化为多个仓库簇的单起点路径配送优化问题。然后,使用改进C-W法对模型进行求解。最后,以浙江省电力物资仓库作为配送实例,验证了文中所提两阶段方法及算法的可用性和可行性。 展开更多
关键词 库容均衡 改进DBscaN聚类算法 C-W法 路径优化
在线阅读 下载PDF
考虑商品间适应度的在线零售商分仓选品优化研究
15
作者 许瑞 丁子千 肖巍 《控制与决策》 北大核心 2025年第6期1959-1968,共10页
随着在线零售业的快速发展,线上订单数量日益庞大,分仓选品对于高效服务线上订单愈发重要.现有研究多从降低拆单率的角度优化选品方案,忽略了拆单造成的额外运输距离差异.鉴于此,首先,构建以最小化拆单率和运输距离为目标的分仓选品问... 随着在线零售业的快速发展,线上订单数量日益庞大,分仓选品对于高效服务线上订单愈发重要.现有研究多从降低拆单率的角度优化选品方案,忽略了拆单造成的额外运输距离差异.鉴于此,首先,构建以最小化拆单率和运输距离为目标的分仓选品问题模型,提出综合衡量订单商品分布与客户地理分布的商品间适应度指标;然后,结合谱聚类方法设计基于固定-优化框架的两阶段分仓选品算法.数值实验表明:与直接求解分仓选品模型相比,所提出算法的固定阶段能够有效缩小搜索空间,在保证求解质量的前提下能够提升求解效率;与现有文献算法相比,所提出算法能够显著降低运输距离和拆单率,为企业优化分仓选品方案提供决策支持. 展开更多
关键词 分仓选品 商品间适应度 固定-优化算法 谱聚类 拆单
原文传递
基于无人机光学相机影像的沙柳单木参数提取研究
16
作者 李明 李浩然 +2 位作者 杨泽坤 燕洁华 叶汪忠 《内蒙古农业大学学报(自然科学版)》 北大核心 2025年第3期47-53,共7页
为提高人工灌木资源调查效率,加快灌木资源库建设,本文以内蒙古毛乌素沙地沙柳林为研究对象,利用无人机正射光学影像数据,通过多进程算法提取三维点云信息,根据冠层高度模型,运用光谱聚类算法和改进融合后的局部最大值和分水岭算法,提... 为提高人工灌木资源调查效率,加快灌木资源库建设,本文以内蒙古毛乌素沙地沙柳林为研究对象,利用无人机正射光学影像数据,通过多进程算法提取三维点云信息,根据冠层高度模型,运用光谱聚类算法和改进融合后的局部最大值和分水岭算法,提出一种适用于无人机光学相机影像的沙柳单木参数提取方法。结果表明,使用算法对试验地沙柳林单木树高进行提取,估测精度为88.8%,平均误差率为11.6%,决定系数为0.751,均方根误差为0.54;对单木树冠面积进行提取,估测精度为90.9%,平均误差率为9.8%,决定系数达到0.965,均方根误差为1.76。本文提出的沙柳单木参数提取方法应用在毛乌素沙地沙柳上具有良好效果,为沙柳等灌木资源信息化提供技术支撑。 展开更多
关键词 沙柳 单木参数提取 无人机光学相机影像 多进程算法 光谱聚类算法 分水岭算法
原文传递
求解无人机三维路径规划问题的动态多子群樽海鞘群算法
17
作者 巫光福 王小林 《科学技术与工程》 北大核心 2025年第13期5501-5514,共14页
无人机三维路径规划问题是在复杂三维环境中找到起点与终点之间最优路径的组合优化问题,但大多数路径规划算法难以在可接受的时间和精度范围内找到可行路径,因此提出了一种基于K-means++聚类优化的动态多子群樽海鞘群算法用于解决上述... 无人机三维路径规划问题是在复杂三维环境中找到起点与终点之间最优路径的组合优化问题,但大多数路径规划算法难以在可接受的时间和精度范围内找到可行路径,因此提出了一种基于K-means++聚类优化的动态多子群樽海鞘群算法用于解决上述问题。首先,在三维环境模型中结合高度成本提出新的成本函数,将路径规划问题转化为多维函数优化问题。其次,采用K-means++聚类算法对种群进行分群,并设计动态多子群机制均衡算法的全局搜索与局部开发;各子群结合多策略协同改进,在避免算法陷入局部最优的同时提高全局寻优能力。最后,在12个CEC2017基准测试函数中验证了该算法对比其他5种算法(ISSA、MSNSSA、IBSO、MBFPA、SSA)的性能后,将其应用于三维环境中对最优路径规划问题进行求解。在不同的环境模型下的仿真实验结果表明,该算法的平均有效路径率相较于其他5种算法分别提高了15.5%、11%、23%、20.5%和18%,这证实了该算法在复杂环境下具有优秀的寻优能力。 展开更多
关键词 三维路径规划 成本函数 樽海鞘群算法 K-means++聚类算法 动态多子群 协同改进
在线阅读 下载PDF
基于数据增强和优化DHKELM的短期光伏功率预测
18
作者 郭利进 马粽阳 胡晓岩 《太阳能学报》 北大核心 2025年第8期463-471,共9页
针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法... 针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法提升数据集的规模与质量。针对深度混合核极限学习机(DHKELM)超参数多等问题,提出融合佳点集初始化、黄金正弦更新策略、非线性扰动和最优个体自适应扰动的改进鹈鹕优化算法(IPOA)对其超参数寻优。最后以青海共和县光伏园内某电站数据为例,结果表明基于数据增强的改进鹈鹕算法优化深度混合核极限学习机(DA-IPOA-DHKELM)模型在不同天气、季节条件下预测误差最小,拟合度均能达到90%以上,改进模型预测精度高、算法适用性强。 展开更多
关键词 光伏功率 预测 聚类分析 数据增强 深度混合核极限学习机 改进算法
原文传递
基于改进区域生长算法对岩体结构面识别的应用 被引量:1
19
作者 司马劲松 许强 +5 位作者 董秀军 邓博 何秋霖 黎浩良 刘杰 雷文权 《岩土力学》 北大核心 2025年第7期2253-2264,共12页
自然岩体结构面具有能够定义岩体薄弱部位的特殊力学性质,对隧道支护、围岩分级和边坡加固等各种岩体工程的结构、强度及稳定起到决定性作用,因此,对结构面单面以及较为发育的优势组判别至关重要。将优势组结构面自动识别步骤分为点云... 自然岩体结构面具有能够定义岩体薄弱部位的特殊力学性质,对隧道支护、围岩分级和边坡加固等各种岩体工程的结构、强度及稳定起到决定性作用,因此,对结构面单面以及较为发育的优势组判别至关重要。将优势组结构面自动识别步骤分为点云法向量计算、结构单面分割和优势组聚类3部分:(1)基于稳健随机霍夫变换的方法计算法向量;(2)提出了一种改进区域生长算法分割出若干结构面单面,在种子点选择和区域生长条件方面考虑了曲率、平面性以及粗糙度并添加动态异常值检测。此外,依靠阈值与结构面数量关系定性判断极端分割情况,同时筛选出较优阈值范围;(3)最后提出改进K均值(S-K-means)聚类算法实现优势组聚类。算法识别准确性通过一处岩质边坡验证,结果显示倾向倾角误差范围在0.7°~2.5°之间,倾向倾角误差均值分别为1.8°、1.7°。此方法将由点云直接聚类识别优势组的方式改为先分割出若干单个结构面再进行聚类,细化了优势组结构面识别的步骤,提高了结构面聚类计算速度与鲁棒性,并适用于多种结构面数据,为岩体结构面的智能识别提供了一种更加精确快速的方法。 展开更多
关键词 结构面单面 优势组结构面 改进区域生长算法 S-K-means聚类 智能识别
原文传递
考虑源侧不确定性的水光储系统短期互补调度研究 被引量:1
20
作者 余天尘 樊宇堃 +3 位作者 高洁 徐斌 卢鹏 钟平安 《水力发电》 CAS 2025年第1期93-100,共8页
受光伏出力波动性影响,大规模新能源并网给电网的安全、经济运行带来了挑战。以余荷波动最小为目标,考虑光伏出力不确定性,建立了水光储系统短期优化调度模型,提出了光伏出力随机场景生成和典型场景聚类方法,以及耦合动态可行收缩、对... 受光伏出力波动性影响,大规模新能源并网给电网的安全、经济运行带来了挑战。以余荷波动最小为目标,考虑光伏出力不确定性,建立了水光储系统短期优化调度模型,提出了光伏出力随机场景生成和典型场景聚类方法,以及耦合动态可行收缩、对数衰减步长和动态罚函数的改进POA算法。在某多能互补基地实例应用,结果表明,改进POA比传统POA算法迭代次数减少22.9%;总余荷波动从50万kW,降低至10万kW以下;水光储互补调度源荷匹配度高达0.998。模型具备较强的跟踪负荷、平稳余荷的能力。 展开更多
关键词 水光储系统 多能互补 不确定性 优化调度 K-MEANS聚类 改进POA算法
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部