期刊文献+
共找到983篇文章
< 1 2 50 >
每页显示 20 50 100
Three stage dynamic partitioning method of active distribution network based on improved sand cat swarm
1
作者 ZHANG Maosong ZHANG Luyao +3 位作者 YANG Jie YANG Lingxiao WANG Xiuqin TAO Jun 《High Technology Letters》 2025年第3期211-225,共15页
With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality st... With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions. 展开更多
关键词 renewable energy consumption dynamic partition MODULARITY voltage regulation sand cat swarm algorithm overlapping nodes
在线阅读 下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
2
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
在线阅读 下载PDF
Enhanced Particle Swarm Optimization Algorithm Based on SVM Classifier for Feature Selection
3
作者 Xing Wang Huazhen Liu +2 位作者 Abdelazim G.Hussien Gang Hu Li Zhang 《Computer Modeling in Engineering & Sciences》 2025年第3期2791-2839,共49页
Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of t... Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems. 展开更多
关键词 Feature selection SVM particle swarm optimization sand cat swarm optimization engineering problems
在线阅读 下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
4
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm 被引量:1
5
作者 姜文英 林焰 +1 位作者 陈明 于雁云 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期565-570,共6页
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car... Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach. 展开更多
关键词 cargo oil tank optimization design nonlinear programming improved particle swarm optimization(PSO)algorithm fuzzy constraint construction feasibility degree
原文传递
Sand Cat Swarm Optimization with Deep Transfer Learning for Skin Cancer Classification
6
作者 C.S.S.Anupama Saud Yonbawi +3 位作者 G.Jose Moses E.Laxmi Lydia Seifedine Kadry Jungeun Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2079-2095,共17页
Skin cancer is one of the most dangerous cancer.Because of the high melanoma death rate,skin cancer is divided into non-melanoma and melanoma.The dermatologist finds it difficult to identify skin cancer from dermoscop... Skin cancer is one of the most dangerous cancer.Because of the high melanoma death rate,skin cancer is divided into non-melanoma and melanoma.The dermatologist finds it difficult to identify skin cancer from dermoscopy images of skin lesions.Sometimes,pathology and biopsy examinations are required for cancer diagnosis.Earlier studies have formulated computer-based systems for detecting skin cancer from skin lesion images.With recent advancements in hardware and software technologies,deep learning(DL)has developed as a potential technique for feature learning.Therefore,this study develops a new sand cat swarm optimization with a deep transfer learning method for skin cancer detection and classification(SCSODTL-SCC)technique.The major intention of the SCSODTL-SCC model lies in the recognition and classification of different types of skin cancer on dermoscopic images.Primarily,Dull razor approach-related hair removal and median filtering-based noise elimination are performed.Moreover,the U2Net segmentation approach is employed for detecting infected lesion regions in dermoscopic images.Furthermore,the NASNetLarge-based feature extractor with a hybrid deep belief network(DBN)model is used for classification.Finally,the classification performance can be improved by the SCSO algorithm for the hyperparameter tuning process,showing the novelty of the work.The simulation values of the SCSODTL-SCC model are scrutinized on the benchmark skin lesion dataset.The comparative results assured that the SCSODTL-SCC model had shown maximum skin cancer classification performance in different measures. 展开更多
关键词 Deep learning skin cancer dermoscopic images sand cat swarm optimization machine learning
在线阅读 下载PDF
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
7
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
8
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved Particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
9
作者 Yi-Han Wang Hai-Feng Zhang 《Chinese Physics B》 SCIE EI CAS 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
原文传递
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
10
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
基于改进沙猫群优化算法优化CatBoost模型的气温和风速偏差订正
11
作者 沈天行 秦华旺 《科学技术与工程》 北大核心 2024年第34期14716-14725,共10页
当前环境下,气象要素的准确预报在农业生产,社会生活和交通运输方面起到了越来越重要的作用,因此提出了一种改进的沙猫群算法(sand cat swarm optimization, SCSO),用于优化CatBoost模型,以解决传统气温和风速预测不准确的问题。研究数... 当前环境下,气象要素的准确预报在农业生产,社会生活和交通运输方面起到了越来越重要的作用,因此提出了一种改进的沙猫群算法(sand cat swarm optimization, SCSO),用于优化CatBoost模型,以解决传统气温和风速预测不准确的问题。研究数据涵盖了南京地区2012年1月1日—2014年12月31日的气象数据,利用ERA5再分析数据作为真实数据。首先,将数据划分为训练集和验证集,利用SCSO优化CatBoost模型,以订正24、48、72 h刻预报的气温和风速。为了克服SCSO易陷入局部最优解和收敛速度慢的问题,采用Halton Sequence搜索算法初始化沙猫群位置,并引入莱维飞行和三角游走策略优化寻优过程。在迭代中,采用LOBL策略和边界突变算子确保不会陷入局部最优解。最后,利用改进的SCSO优化CatBoost的超参数,并结合K折交叉验证提高参数的可靠性和泛化性。结果表明,改进的SCSO-CatBoost模型相比XGBoost、LightGBM、传统GBDT、随机森林、支持向量机和线性回归模型具有更高的准确性和优越性,在24 h的气温和风速预测中均方根误差分别提升了0.514 5和0.174 9,在48、72 h的提升也十分显著。为提升气象要素预报准确性提供了科学依据和技术支持。 展开更多
关键词 catBoost 沙猫群优化算法 神经网络 PYTHON 气象预测 偏差订正
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
12
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
考虑氢储能与源荷不确定性的微网优化配置 被引量:2
13
作者 栗然 王欣鹏 +1 位作者 白杨 王嘉琳 《华北电力大学学报(自然科学版)》 北大核心 2025年第3期32-41,53,共11页
为提高可再生能源的就地消纳能力,解决能量季节不平衡问题,提出一种考虑季节性氢储能和源荷不确定性的微电网双层优化配置方法。给出电热氢微电网结构,建立耦合季节性氢储能的微电网模型;为描述源荷不确定性因素,突出源荷的季节性与时序... 为提高可再生能源的就地消纳能力,解决能量季节不平衡问题,提出一种考虑季节性氢储能和源荷不确定性的微电网双层优化配置方法。给出电热氢微电网结构,建立耦合季节性氢储能的微电网模型;为描述源荷不确定性因素,突出源荷的季节性与时序性,基于马尔科夫链表征风电出力不确定性,结合蒙特卡洛抽样生成大量源荷不确定场景,进而基于概率场景缩减为典型源荷场景;建立微电网双层优化配置模型,上层模型以微电网年化综合成本为优化目标,下层模型以微电网年总运行成本为优化目标;采用沙地猫群优化算法与混合整数线性规划相互迭代的方法对双层模型进行求解。算例求解结果证明所提出模型的有效性,能够提高风光的消纳率,兼顾微网中的经济性与不确定因素,分析源荷不确定性对微电网优化配置的影响,为含有氢储能的微电网优化配置研究提供参考。 展开更多
关键词 季节性氢储能 源荷不确定性 马尔科夫链蒙特卡洛方法 双层优化配置 沙地猫群优化算法
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
14
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
15
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
考虑淡水壳菜腐烂影响的长距离输水隧洞检修通风方案优化方法
16
作者 刘长欣 余红玲 +3 位作者 王晓玲 郭章潮 李沛 王佳俊 《水利学报》 北大核心 2025年第3期375-386,共12页
长距离输水隧洞检修期排水时,壁面附着的淡水壳菜会死亡腐烂并释放出大量有害气体,严重威胁检修安全。现有地下工程通风安全研究侧重于考虑通风效果的通风方案比选,难以获取兼顾通风效果和通风成本的全局最优方案,且缺乏考虑淡水壳菜腐... 长距离输水隧洞检修期排水时,壁面附着的淡水壳菜会死亡腐烂并释放出大量有害气体,严重威胁检修安全。现有地下工程通风安全研究侧重于考虑通风效果的通风方案比选,难以获取兼顾通风效果和通风成本的全局最优方案,且缺乏考虑淡水壳菜腐烂有害气体的影响。此外,基于帕累托最优准则(PO)的多目标优化方法在输出非支配解集后,需要结合多准则决策方法进行二次选择方可得到最优解,优化效率较低。针对上述问题,提出考虑淡水壳菜腐烂影响的长距离输水隧洞检修通风方案模糊逻辑多目标优化方法。首先,结合模糊隶属度函数将多个优化目标转换到相同的连续域空间,并综合处理成统一的优化指标,构建基于模糊逻辑(FL)的多目标优化数学模型,以进行兼顾通风效果与通风成本的全局寻优;然后,提出基于混沌映射和最优邻域扰动策略改进的沙漠猫群优化(ISCSO)算法求解多目标优化数学模型,避免非支配解集的二次选择,提高优化效率。性能测试和案例研究表明,本文提出的ISCSO-FL多目标优化方法在解的质量、解的鲁棒性以及计算复杂度等方面具有优越性。本文方法得到的最优方案能够满足通风安全需求,通风成本相比初始方案降低21.9%,且优化效率相比基于PO准则的多目标优化方法提高68.1%。本研究可为地下工程通风方案的设计与优化提供新思路。 展开更多
关键词 长距离输水隧洞 检修通风 淡水壳菜腐烂 多目标优化 模糊逻辑 改进沙漠猫群优化算法
在线阅读 下载PDF
基于多目标沙猫群算法的含碳捕集虚拟电厂优化调度
17
作者 高建强 蔡杜钟 +1 位作者 刘春涛 危日光 《动力工程学报》 北大核心 2025年第7期1126-1133,1152,共9页
针对现有智能算法在求解多目标虚拟电厂优化调度问题存在的收敛速度慢、易陷入局部最优解等问题,建立了以收益最大和碳排放量最小为目标函数的含碳捕集虚拟电厂优化调度模型,并采用多目标沙猫群算法对所提模型进行优化求解,将优化结果... 针对现有智能算法在求解多目标虚拟电厂优化调度问题存在的收敛速度慢、易陷入局部最优解等问题,建立了以收益最大和碳排放量最小为目标函数的含碳捕集虚拟电厂优化调度模型,并采用多目标沙猫群算法对所提模型进行优化求解,将优化结果与多目标灰狼算法和多目标遗传算法进行比较,并采用熵权-逼近理想解排序法对多目标沙猫群算法优化得到的各方案进行筛选,得到兼顾经济性和环保性的综合最优方案。结果表明:多目标沙猫群算法得到的方案优于其他2种算法;综合最优方案的系统总收益为60.26万元,碳排放量为249.15 t,相比只考虑系统收益最大化所得的方案,该方案系统收益虽下降了8.90%,但碳排放量下降了41.95%。 展开更多
关键词 虚拟电厂 多目标沙猫群算法 优化调度 熵权-逼近理想解排序法
在线阅读 下载PDF
电力现货市场环境下考虑边际成本的综合能源系统调度策略
18
作者 王永利 张云飞 +3 位作者 赵伟博 马恺玮 李强 姜斯冲 《科学技术与工程》 北大核心 2025年第3期1075-1086,共12页
综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略... 综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略。首先,分析了外部现货市场环境下市场价格不确定性典型场景处理方法,并研究了综合能源系统内部多种源荷可调资源及运行成本结构;其次,建立了在电力市场价格不确定性条件下考虑系统边际成本交易优化模型,并提出沙猫群优化算法进行求解。最后,通过对实际案例的仿真验证。结果表明:该策略不仅可以降低IES的运行成本,还能增强其对市场价格不确定性的适应能力,为综合能源系统在电力现货市场环境下的运行提供了新的思路和方法,有助于实现能源系统参与市场调度的经济性和可靠性双重优化。 展开更多
关键词 电力现货市场 边际成本 综合能源系统 沙猫群优化算法
在线阅读 下载PDF
基于系统辨识和改进多目标粒子群算法的水泥原料配比优化
19
作者 秦红斌 陈龙 +1 位作者 唐红涛 张峰 《控制工程》 北大核心 2025年第7期1260-1270,共11页
为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对... 为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对其进行求解;然后,建立了以最小化原料成本和原料配比调整量为目标的原料配比多目标优化模型,将各项生料质量控制指标加入约束条件以保证解的可行性,并提出了改进多目标粒子群优化算法对模型进行求解。实验结果表明,相比于非支配排序遗传算法II(non-dominated sorting genetic algorithm II,NSGA-II)和人工配比,采用所提算法优化原料配比,不仅将各项生料质量控制指标较好地控制在目标范围内,还降低了原料成本。 展开更多
关键词 水泥原料配比 原料氧化物含量等效值 系统辨识 改进多目标粒子群优化算法
原文传递
四轮毂电机驱动汽车的差速转向控制研究
20
作者 屈小贞 张昊 +1 位作者 李刚 刘晏 《现代制造工程》 北大核心 2025年第9期90-98,共9页
为提高四轮毂电机驱动汽车在高速转弯时的转向稳定性,准确协调各驱动轮之间的差速控制,设计了一种基于驱动力矩分配的差速转向控制策略。差速转向控制策略采用分层控制架构,上层控制器基于滑模变结构控制算法计算汽车所需的总驱动力矩,... 为提高四轮毂电机驱动汽车在高速转弯时的转向稳定性,准确协调各驱动轮之间的差速控制,设计了一种基于驱动力矩分配的差速转向控制策略。差速转向控制策略采用分层控制架构,上层控制器基于滑模变结构控制算法计算汽车所需的总驱动力矩,基于改进粒子群优化算法优化模糊全局快速终端滑模控制,计算汽车差速转向所需的附加横摆力矩;下层控制器则基于二次规划算法将所计算的总驱动力矩和附加横摆力矩进行优化分配,进而得到各个车轮的驱动力矩。通过Carsim/Simulink软件进行联合仿真对所设计的控制策略进行验证,结果表明,相较于传统控制策略,差速转向控制策略能更有效地降低汽车在高速转弯时的横摆角速度和质心侧偏角峰值响应。 展开更多
关键词 四轮毂电机 差速转向控制 改进粒子群优化算法 二次规划
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部