期刊文献+
共找到1,168篇文章
< 1 2 59 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm 被引量:1
2
作者 姜文英 林焰 +1 位作者 陈明 于雁云 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期565-570,共6页
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car... Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach. 展开更多
关键词 cargo oil tank optimization design nonlinear programming improved particle swarm optimization(PSO)algorithm fuzzy constraint construction feasibility degree
原文传递
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
3
作者 Yi-Han Wang Hai-Feng Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
原文传递
Quantum-Inspired Particle Swarm Optimization Algorithm Encoded by Probability Amplitudes of Multi-Qubits
4
作者 Xin Li Huangfu Xu Xuezhong Guan 《Open Journal of Optimization》 2015年第2期21-30,共10页
To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of t... To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of the basic states of the multi-qubits system. The rotation angles of multi-qubits are determined based on the local optimum particle and the global optimal particle, and the multi-qubits rotation gates are employed to update the particles. At each of iteration, updating any qubit can lead to updating all probability amplitudes of the corresponding particle. The experimental results of some benchmark functions optimization show that, although its single step iteration consumes long time, the optimization ability of the proposed method is significantly higher than other similar algorithms. 展开更多
关键词 quantum Computing particle swarm optimization Multi-Qubits PROBABILITY AMPLITUDES Encoding algorithm Design
暂未订购
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
5
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
6
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
Quantum-inspired swarm evolution algorithm
7
作者 HUANG You-rui TANG Chao-li WANG Shuang 《通讯和计算机(中英文版)》 2008年第5期36-39,共4页
关键词 量子计算 颗粒集群优化 进化算法 计算机技术
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
8
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
Optimal Planning of Charging Station for Electric Vehicle Based on Quantum PSO Algorithm 被引量:9
9
作者 LIU Zifa ZHANG Wei WANG Zeli 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0006-I0006,共1页
关键词 电动汽车 粒子群算法 充电站 规划 优化 量子 能源 EV
原文传递
融合多维时间序列分析的IQPSO-GRU综采工作面瓦斯浓度软测量模型
10
作者 付华 刘雨竹 +1 位作者 徐楠 张俊男 《传感技术学报》 北大核心 2025年第5期877-885,共9页
为快速、准确预测煤矿综采工作面瓦斯浓度,建立基于多维时间序列(MTS)分析的改进量子粒子群算法(IQPSO)优化门控循环单元网络(GRU)的综采工作面瓦斯浓度软测量模型。首先利用拉索(Lasso)算法对煤矿监测系统采集到的MTS数据进行特征提取... 为快速、准确预测煤矿综采工作面瓦斯浓度,建立基于多维时间序列(MTS)分析的改进量子粒子群算法(IQPSO)优化门控循环单元网络(GRU)的综采工作面瓦斯浓度软测量模型。首先利用拉索(Lasso)算法对煤矿监测系统采集到的MTS数据进行特征提取,得出影响瓦斯浓度演化趋势的主要因素作为模型输入量;其次在GRU网络单元中引入ReLU激活函数及Dropout丢弃层解决模型训练梯度问题并增强其泛化能力;提出IQPSO优化GRU网络超参数,提升模型预测准确率及运算效率,得到参数最优的瓦斯浓度软测量模型;最后将所提出的软测量模型与GRU、LSTM、决策树模型进行对比分析,结果表明:所建模型的相对均方根误差值可缩小至0.1021,平均绝对百分比误差可缩小至0.892,而拟合优度决定系数可优化至0.9881,说明其预测结果拟合度更佳、测量性能更优。 展开更多
关键词 瓦斯浓度 软测量 Lasso特征提取 改进的量子粒子群算法 门控循环单元网络
在线阅读 下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:19
11
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(IPSO) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
面向多无人机物流配送的双层任务规划方法
12
作者 王飞 杨清平 《北京航空航天大学学报》 北大核心 2026年第1期94-103,共10页
多无人机任务协同规划与配送路径规划是城市无人机物流配送的核心内容,两者相互耦合,需要进行一体化研究。为保障安全、高效完成多无人机物流配送任务,采用栅格法对三维城市超低空间进行环境建模,阐述了栅格危险度计算方法。构建一种无... 多无人机任务协同规划与配送路径规划是城市无人机物流配送的核心内容,两者相互耦合,需要进行一体化研究。为保障安全、高效完成多无人机物流配送任务,采用栅格法对三维城市超低空间进行环境建模,阐述了栅格危险度计算方法。构建一种无人机配送线路及航迹协同规划的双层规划模型,在上层规划模型中,考虑无人机载重及最大航程约束,以延迟惩罚代价最小为目标,引入遗传算法来确定无人机配送顺序;在下层规划模型中,考虑无人机性能约束,以时效性代价最小、无人机高度变化及栅格危险度最小为目标,提出一种综合改进粒子群优化(CIPSO)算法,求解无人机飞行路径。进行算例仿真分析,结果表明:与粒子群优化(PSO)算法、改进加速因子粒子群优化(ICPSO)算法相比,CIPSO算法总代价分别下降了65.00%和38.41%,所建模型与所提算法是可行的和有效的。 展开更多
关键词 物流无人机 任务分配 路径规划 双层规划模型 改进粒子群优化算法
原文传递
A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization 被引量:2
13
作者 Cui HUANG Dakun ZHANG Guozhi SONG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期622-631,共10页
Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP ... Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip. 展开更多
关键词 three-dimensional network on chip mapping al-gorithm quantum-behaved particle swarm optimization al-gorithm particle swarm optimization algorithm low powerconsumption
原文传递
基于IQPSO-BP算法的煤矿瓦斯涌出量预测 被引量:11
14
作者 程加堂 艾莉 熊燕 《矿业安全与环保》 北大核心 2016年第4期38-41,共4页
针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子群优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子群算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡... 针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子群优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子群算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡算法的全局勘探和局部开发能力。并依此来优化BP神经网络的权值、阈值参数,进而建立了瓦斯涌出量预测模型。试验结果表明,IQPSO-BP算法具有较强的泛化能力及较高的预测精度,可有效用于煤矿瓦斯涌出量的预测。 展开更多
关键词 瓦斯涌出量 预测 改进量子粒子群优化算法 BP神经网络
在线阅读 下载PDF
基于IQPSO-EKF的多传感器融合姿态测量方法研究 被引量:1
15
作者 胡启国 王磊 +1 位作者 马鉴望 任渝荣 《机电工程》 CAS 北大核心 2024年第2期353-363,共11页
为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除... 为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除噪、滤波、校准等);然后,参考现有飞行器的坐标系,建立了姿态解算模型,通过姿态角数学模型及运动学分析,构建了EFK状态方程,针对EKF方法参数估计不准确的问题,以分段混沌映射优化初始种群,引入平均位置最优值来避免陷入局部最优的IQPSO-EFK算法,优化EKF的系统、测量噪声的协方差参数;最后,对改进算法和三组姿态误差估计进行了对比实验。研究结果表明:对比三种典型目标函数,IQPSO-EFK相较于普通粒子群算法(QPSO-EFK)具有更强的寻优能力与收敛精度;对比三组旋转速度姿态测量误差,基于IQPSO-EKF算法的姿态测量方法在测量误差时比真实测量误差减少了约86.3%,比扩展卡尔曼滤波减少了约68.7%,比普通粒子群算法减少了约28.2%,证明该算法有效地提高了MEMS传感器测量精度。 展开更多
关键词 竖井掘进 角度测量仪器 姿态测量 微机电系统传感器 多传感器融合 改进量子粒子群-扩展卡尔曼滤波
在线阅读 下载PDF
基于径流预测的流域小水电群可调能力优化
16
作者 何桂雄 张新鹤 +1 位作者 谢学渊 徐勇 《水电能源科学》 北大核心 2026年第1期217-221,共5页
小水电具有小容量、多点分布、流域相关性强等特点,传统“随流发电”模式具有无序性,小水电群灵活可调价值未得到充分释放,可调能力评估与优化是流域小水电群支撑电网调峰、风光电消纳的关键。在流域小水电群径流预测基础上,提出以小水... 小水电具有小容量、多点分布、流域相关性强等特点,传统“随流发电”模式具有无序性,小水电群灵活可调价值未得到充分释放,可调能力评估与优化是流域小水电群支撑电网调峰、风光电消纳的关键。在流域小水电群径流预测基础上,提出以小水电当前水位最大发电流量下泄对应出力为可调出力上限,以生态装机容量对应出力为下限,确定了小水电可调节容量区间,进而构建了流域小水电群可调容量优化模型并提出改进粒子群求解算法。以金溪流域的良浅、大言、孔头、范厝、高唐5座串联径流式电站为例进行降雨—径流过程模拟,分析小水电群库容与其发电、入库流量耦合关系,计算流域小水电群最优出力及可调节出力区间并进行优化求解。结果表明,优化后可调容量区间增大,调节能力上限提高了12.1%,实际出力比优化前提高了14.6%。优化后出力方式可支撑电网在更大区间调整小水电出力,为电网调度部门挖掘小水电资源灵活价值,发挥其调峰和消纳能力提供了决策支撑。 展开更多
关键词 径流预测 小水电群 可调能力 改进粒子群算法 优化调度
原文传递
基于改进PSO-BO-BP的拖拉机双燃料发动机性能预测
17
作者 陈晖 王冰心 +1 位作者 黄镇财 计端 《农机化研究》 北大核心 2026年第1期268-276,共9页
为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机... 为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机制,构建多尺度优化模型。结果表明:BO解析了神经网络隐含层维度与学习率的非线性耦合效应,确定隐含层神经元数量24、学习率0.00215为最优参数组合,表明模型复杂度与学习率调控对泛化性能的协同约束作用;性能预测中,IMPSO-BO-BP对制动热效率(BTE)和制动燃料消耗率(BSFC)的预测平均绝对百分比误差(MAPE)与均方根误差(RMSE)较BO-BP模型降低25%~40%,R^(2)提升至0.995及以上,验证了其对物理主导型非线性关系的高精度建模能力;排放预测方面,模型对CO、NO_(x)和HC的MAPE为3.403%、5.223%、3.413%,R^(2)达0.9925、0.9942、0.9946,RMSE为56.429、45.709、335.322,虽精度略低于性能参数预测,但较BO-BP模型仍提升显著。研究证实多算法协同机制通过全局优化与局部收敛的互补效应,可显著提升模型精度和鲁棒性,为拖拉机双燃料发动机多目标优化控制和低排放设计提供了可靠的建模工具。 展开更多
关键词 双燃料发动机 性能预测 BP神经网络 改进粒子群优化算法
在线阅读 下载PDF
基于改进PSO-OTSU的图像分割算法研究
18
作者 吕途 陈一言 +1 位作者 段豪 韩伟 《技术与市场》 2026年第1期13-17,共5页
为解决传统阈值分割方法(最大类间方差法)在图像阈值分割中存在空间和时间复杂度高、实时性差的问题,提出了一种改进惯性权重的粒子群优化(particle swarm optimization,PSO)算法与传统最大类间方差法(OTSU)相结合的图像阈值分割算法。... 为解决传统阈值分割方法(最大类间方差法)在图像阈值分割中存在空间和时间复杂度高、实时性差的问题,提出了一种改进惯性权重的粒子群优化(particle swarm optimization,PSO)算法与传统最大类间方差法(OTSU)相结合的图像阈值分割算法。为了证明提出的方法对图像分割的效果相较于传统OTSU更优,通过MATLAB软件平台搭建仿真模型,将该算法和传统算法对同一组图片进行单阈值和二阈值阈值分割,将二者的分割结果(运行时间、峰值信噪比、平均结构相似性指数)进行对比。结果表明:该方法相较于传统阈值分割方法阈值分割的运行时间更短、峰值信噪比(peak signal-to-noise ratio,PSNR)更大和平均结构相似性指数(mean structural similarity index,MSSIM)值更接近于1。可见,此本文提出的算法相较于传统算法能够更快更优地对图像进行分割,有效解决了传统方法空间和时间复杂度高、实时性差的问题。 展开更多
关键词 最大类间方差法(OTSU) 改进惯性权重 粒子群优化(PSO)算法 峰值信噪比(PSNR) 平均结构相似性指数(MSSIM)
在线阅读 下载PDF
长距离输电线路无人机巡检路径智能规划方法
19
作者 方斌 胡诚 +1 位作者 万娇 黄林 《自动化技术与应用》 2026年第1期28-32,共5页
针对复杂多变的长距离巡检环境,传统巡检路径规划方法难以快速适应并调整巡检路径,导致规划方案不够合理等问题,研究一种长距离输电线路无人机巡检路径智能规划方法。通过设置模型假设条件,定义巡检路径长度和转弯次数两个目标函数并结... 针对复杂多变的长距离巡检环境,传统巡检路径规划方法难以快速适应并调整巡检路径,导致规划方案不够合理等问题,研究一种长距离输电线路无人机巡检路径智能规划方法。通过设置模型假设条件,定义巡检路径长度和转弯次数两个目标函数并结合约束条件构建规划模型,利用改进粒子群算法求解模型最优解,得出无人机巡检路径规划方案。结果表明,无人机巡检路径智能规划方法规划出来的路径长度更短,转弯次数更少,规划方案更为合理,规划能力更强。 展开更多
关键词 长距离输电线路 无人机 巡检 目标函数 改进粒子群算法 路径规划
在线阅读 下载PDF
Dynamic services selection algorithm in Web services composition supporting cross-enterprises collaboration 被引量:7
20
作者 胡春华 陈晓红 梁昔明 《Journal of Central South University》 SCIE EI CAS 2009年第2期269-274,共6页
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele... Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms. 展开更多
关键词 Web services composition optimal service selection improved particle swarm optimization algorithm (IPSOA) cross-enterprises collaboration
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部