Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ...Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm.展开更多
The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Base...The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.展开更多
When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires bloc...When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires block-by-block estimation of clutter models and FCM clustering converges to local optimum. To address these problems, this paper pro-poses a new detection algorithm: knowledge-based combined with improved genetic algorithm-fuzzy C-means (GA-FCM) algorithm. Firstly, the algorithm takes target region's maximum and average intensity, area, length of long axis and long-to-short axis ratio of the external ellipse as factors which influence the target appearing probabil- ity. The knowledge-based detection algorithm can produce preprocess results without the need of estimation of clutter models as CFAR does. Afterward the GA-FCM algorithm is improved to cluster pre-process results. It has advantages of incorporating global optimizing ability of GA and local optimizing ability of FCM, which will further eliminate false alarms and get better results. The effectiveness of the proposed technique is experimentally validated with real SAR images.展开更多
文摘Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm.
文摘The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.
基金supported by the National Natural Science Foundation of China(6107113961171122)+1 种基金the Fundamental Research Funds for the Central Universities"New Star in Blue Sky" Program Foundation the Foundation of ATR Key Lab
文摘When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires block-by-block estimation of clutter models and FCM clustering converges to local optimum. To address these problems, this paper pro-poses a new detection algorithm: knowledge-based combined with improved genetic algorithm-fuzzy C-means (GA-FCM) algorithm. Firstly, the algorithm takes target region's maximum and average intensity, area, length of long axis and long-to-short axis ratio of the external ellipse as factors which influence the target appearing probabil- ity. The knowledge-based detection algorithm can produce preprocess results without the need of estimation of clutter models as CFAR does. Afterward the GA-FCM algorithm is improved to cluster pre-process results. It has advantages of incorporating global optimizing ability of GA and local optimizing ability of FCM, which will further eliminate false alarms and get better results. The effectiveness of the proposed technique is experimentally validated with real SAR images.