期刊文献+
共找到965篇文章
< 1 2 49 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm 被引量:1
2
作者 姜文英 林焰 +1 位作者 陈明 于雁云 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期565-570,共6页
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car... Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach. 展开更多
关键词 cargo oil tank optimization design nonlinear programming improved particle swarm optimization(PSO)algorithm fuzzy constraint construction feasibility degree
原文传递
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
3
作者 Yi-Han Wang Hai-Feng Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
原文传递
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
4
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
在线阅读 下载PDF
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
5
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
6
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved Particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
7
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(ipso) fall detection
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
8
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
原文传递
Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer 被引量:7
9
作者 Ding Yongfei Yang Liuqing +2 位作者 Hou Jianyong Jin Guting Zhen Ziyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期181-187,共7页
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe... A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat. 展开更多
关键词 collaborative combat multi-target decision-making improved particle swarm optimization(ipso)
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
10
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
基于IBAS-IPSO算法的交直流混合微网运行优化
11
作者 潘鹏程 荣梦杰 +1 位作者 香静 徐恒山 《电力系统及其自动化学报》 北大核心 2025年第10期75-84,共10页
针对交直流混合微网多目标运行优化模型目标函数具有多样、约束条件复杂及采用粒子群优化算法时存在搜索效率低、易陷入局部最优的问题,提出一种将改进粒子群优化算法和改进天牛须搜索算法融合的双重搜索优化算法。首先,基于粒子群优化... 针对交直流混合微网多目标运行优化模型目标函数具有多样、约束条件复杂及采用粒子群优化算法时存在搜索效率低、易陷入局部最优的问题,提出一种将改进粒子群优化算法和改进天牛须搜索算法融合的双重搜索优化算法。首先,基于粒子群优化算法,引入动态自适应参数改变惯性权重因子和学习因子;然后,为提高粒子群优化算法的收敛精度,对天牛须搜索算法采用动态步长搜索机制;最后,以经济性和环保性为目标,采用本文算法对交直流混合微网运行进行优化。优化结果表明,本文算法与其他算法相比得到的运行成本和环保成本更低,运行时间更短,有一定的工程应用价值。 展开更多
关键词 交直流混合微网 经济性 环保性 改进粒子群优化算法 改进天牛须搜索算法 运行优化
在线阅读 下载PDF
基于IPSO-VMD联合小波阈值的超低空磁异常信号去噪方法
12
作者 杨帆 徐春雨 李肃义 《电子测量与仪器学报》 北大核心 2025年第6期204-211,共8页
变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)... 变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)联合小波阈值的去噪方法。首先,通过引入自适应惯性权重和学习因子策略,利用排列熵作为自适应函数,实现了对上述参数自适应。之后,采用最优参数组合对信号进行分解,并对异常分量应用小波阈值去噪处理。最终,将信号重构并获得去噪后的信号。仿真实验结果表明,该方法相比其他方法将信噪比提升了约9.44 dB,相关系数达到约0.74,获得了良好的去噪效果。通过野外实验表明,去噪后的实测信号磁异常位置明显,有效降低了环境噪声对信号的干扰,显示出在野外超低空磁目标勘探中的应用潜力。 展开更多
关键词 超低空磁异常探测 改进粒子群优化(ipso) 变分模态分解(VMD) 参数自适应 小波阈值
原文传递
基于IPSO和NSGA-II方法的考虑储能配电网拓扑规划
13
作者 肖冲 肖勇 《现代工业经济和信息化》 2025年第9期134-135,138,共3页
设计了一种基于IPSO和NSGA-II方法的考虑储能配电网拓扑规划方法,确定了多目标算法原理。研究结果表明:所提算法进行处理时则能够消除受多峰函数影响而产生局部最优情况,获得更可靠结果。所提算法获得了比PSO算法与NSGA-II算法更小的平... 设计了一种基于IPSO和NSGA-II方法的考虑储能配电网拓扑规划方法,确定了多目标算法原理。研究结果表明:所提算法进行处理时则能够消除受多峰函数影响而产生局部最优情况,获得更可靠结果。所提算法获得了比PSO算法与NSGA-II算法更小的平均最优适应度,表现出来更优的性能,减少了算法运算的迭代次数,促进收敛精度的显著提升。该研究有效提高电网规划效率和节能效果,具有很高的应用价值。 展开更多
关键词 电网规划 适应度 改进粒子群算法 NSGA-II算法
在线阅读 下载PDF
一种模糊PI控制器参数IPSO寻优的PMSM控制方法研究
14
作者 李美琪 欧阳奇 +2 位作者 张兴兰 谢鹏 黄碧媛 《计算机测量与控制》 2025年第8期137-144,共8页
针对传统模糊PI控制器控制参数固定不变而造成控制性能较差以及系统自适应能力下降的问题,提出了一种基于改进粒子群的模糊PI控制器参数寻优方法;使用模糊控制器改善PI的参数,随后应用引入Arctan函数自适应惯性权重来优化粒子群算法的... 针对传统模糊PI控制器控制参数固定不变而造成控制性能较差以及系统自适应能力下降的问题,提出了一种基于改进粒子群的模糊PI控制器参数寻优方法;使用模糊控制器改善PI的参数,随后应用引入Arctan函数自适应惯性权重来优化粒子群算法的全局特性,进而寻找到模糊控制中量化因子和比例因子的最优值,以使系统达到更好的控制效果;在Matlab/Simulink下搭建PMSM矢量控制调速仿真模型,通过3种工况验证所提控制方法的有效性;仿真结果表明,基于改进粒子群算法寻优的模糊PI控制方法与传统模糊PI控制和标准粒子群模糊PI控制相比,无负载以1000 r/min启动,0.04 s转速降为800 r/min时其调节时间、超调量、稳态误差分别下降52.1%,98.9%,82.2%和13.9%,76.9%,12.5%;无负载启动,0.04 s添加10 N·m的负载转矩时其调节时间、超调量、稳态误差分别下降了60.4%,59.9%,33.8%和40.2%,57.3%,27.2%,以12 N·m的负载启动,0.04 s负载转矩突变为0 N·m时其调节时间、超调量、稳态误差分别下降了47.7%,93.5%,82.7%和11.6%,85.3%,43.2%;该方法提高了永磁同步电机控制系统的动态响应速度,减少了超调和波动,使系统达到更好的控制效果。 展开更多
关键词 PMSM 改进粒子群优化算法 模糊PI控制 量化因子 比例因子 闭环控制系统
在线阅读 下载PDF
基于Spearman-IPSO-LSSVM的短期电力负荷预测方法研究 被引量:2
15
作者 赵宇庆 腾志军 《电气自动化》 2025年第1期102-104,108,共4页
为提高地区用电负荷预测的精度,使用斯皮尔曼相关系数法,计算出地区天气各特征因素和用电负荷的相关性大小,并选择相关性大的因数作为最小二乘支持向量机模型的输入向量。为克服最小二乘支持向量机算法模型对核函数和惩戒参数的敏感性,... 为提高地区用电负荷预测的精度,使用斯皮尔曼相关系数法,计算出地区天气各特征因素和用电负荷的相关性大小,并选择相关性大的因数作为最小二乘支持向量机模型的输入向量。为克服最小二乘支持向量机算法模型对核函数和惩戒参数的敏感性,提高算法的泛化能力,引入一种改进的粒子群优化算法对最小二乘支持向量机模型相关参数进行寻优。最后以某地区电力负荷实际历史数据为算例,对某日负荷进行预测。结果表明,所提算法对地区短期电力负荷预测具有较好的预测精度和使用价值。 展开更多
关键词 用电负荷 斯皮尔曼相关系数 最小二乘支持向量机 改进粒子群算法 预测精度
在线阅读 下载PDF
基于GA_IPSO-SFLA-WNN模型的光伏阵列故障诊断研究
16
作者 周文 高强 +1 位作者 刘赫 毛泽民 《天津理工大学学报》 2025年第2期37-44,共8页
为准确辨识光伏阵列的运行故障,该研究提出了一种基于遗传动惯量粒子群优化算法(genetic algorithm and improved particle swarm optimization,GA_IPSO)、混合蛙跳算法(shuffled frog leaping algorithm,SFLA)以及小波神经网络(wavelet... 为准确辨识光伏阵列的运行故障,该研究提出了一种基于遗传动惯量粒子群优化算法(genetic algorithm and improved particle swarm optimization,GA_IPSO)、混合蛙跳算法(shuffled frog leaping algorithm,SFLA)以及小波神经网络(wavelet neural network,WNN)相结合的故障诊断方法。首先建立了光伏组件的运行模型,提取了故障状态下光伏组件的运行数据;然后,搭建以WNN为基础的光伏故障诊断模型,针对WNN模型的参数初始值敏感且容易陷入局部极小值的问题,采取SFLA算法对初始值进行优化;为解决SFLA优化的WNN模型中不同子组个体差异大和移动步长随机性的问题,采取GA_IPSO求解最优个体和最佳步长。实验结果表明,该方法对5种光伏故障(开路、短路、阴影、老化和电势诱导衰减(potential induced degradation,PID))的平均识别准确率达到98.50%,相较改进前故障的准确率提升了9.5%,在澳大利亚光伏数据集(DKASC)下优于误差反向传播(back propagation,BP)神经网络、极限学习机(extreme learning machine,ELM)和支持向量机(support vector machine,SVM)的分类效果。 展开更多
关键词 光伏阵列 故障诊断 小波神经网络 混合蛙跳算法 遗传动惯量粒子群算法
在线阅读 下载PDF
基于IPSO⁃BP的消防通信指挥系统效能评价
17
作者 于振江 《中国安全科学学报》 北大核心 2025年第9期1-7,共7页
为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过... 为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过改进粒子群优化(IPSO)算法优化参数,提出基于IPSO-BP的系统效能评价方法;采用专家打分与层次分析法(AHP)结合的方式获取样本数据,经主成分分析(PCA)方法降维后,分别基于BP神经网络、PSO-BP神经网络、IPSO-BP神经网络这3个模型开展仿真对比。结果表明:IPSO-BP神经网络模型的收敛速度最快,其均方误差相比于BP神经网络模型降低了75.71%,相较于PSO-BP神经网络模型降低了45.96%,为三者中的最小值;IPSO-BP模型能够合理精准地评价支队级消防通信指挥系统效能,具有一定的普适性。 展开更多
关键词 消防通信指挥系统 效能评价 反向传播(BP)神经网络 改进粒子群优化(ipso) 指标体系
原文传递
基于IPSO-BP-AR模型的卫星钟差预报
18
作者 赵妮妮 《测绘与空间地理信息》 2025年第S1期82-85,共4页
为了提升卫星钟差预报的精确性,推动其在卫星导航定位系统中的广泛应用,本文提出一种新的循环钟差预报模型。该模型结合了改进粒子群优化(IPSO)算法和反向传播(BP)神经网络模型,实现对神经网络模型参数的高效优化。首先,借助IPSO算法优... 为了提升卫星钟差预报的精确性,推动其在卫星导航定位系统中的广泛应用,本文提出一种新的循环钟差预报模型。该模型结合了改进粒子群优化(IPSO)算法和反向传播(BP)神经网络模型,实现对神经网络模型参数的高效优化。首先,借助IPSO算法优化的BP神经网络模型,对卫星的初始钟差序列进行高精度的预报;其次,采用自回归(AR)模型,精确校正IPSO-BP模型预报中产生的误差;最终,将AR模型的校正结果与IPSO-BP模型的预报结果相结合,形成更为精准的预报结果。为了验证该模型的性能,选取了4种典型的卫星钟差序列作为测试样本。实验结果显示,本文提出的组合预报模型在6 h的卫星钟差预报中,稳定性和精度上较BP神经网络模型、AR模型及IPSO-BP模型分别提高了78.63%、33.04%、29.25%和84.13%、52.38%、40.00%,实验成果验证了本文所提出模型的优越性能。 展开更多
关键词 卫星钟差预报 BP神经网络 改进粒子群优化算法 自回归模型
在线阅读 下载PDF
液压拉床双缸IPSO-PID伺服同步驱动控制研究 被引量:10
19
作者 倪敬 邵斌 +1 位作者 蒙臻 陈国金 《中国机械工程》 EI CAS CSCD 北大核心 2013年第11期1494-1500,共7页
针对单缸驱动液压拉床存在刀架溜板同步性能较低的问题,设计了双缸电液伺服同步驱动系统,在分析刀架溜板拉削运动特性的基础上建立了系统的非线性模型;根据系统跟踪性能和同步性能指标要求,引入改进型粒子群优化算法(IPSO),提出了类似经... 针对单缸驱动液压拉床存在刀架溜板同步性能较低的问题,设计了双缸电液伺服同步驱动系统,在分析刀架溜板拉削运动特性的基础上建立了系统的非线性模型;根据系统跟踪性能和同步性能指标要求,引入改进型粒子群优化算法(IPSO),提出了类似经典PID控制器结构的IPSO-PID伺服同步控制策略。在液压拉床上的实际应用结果表明,该控制策略比常规PID同步控制策略具有更好的跟踪性能和同步驱动性能,可以较好地解决双缸液压拉床的同步驱动问题。 展开更多
关键词 改进型粒子群优化算法(ipso) ipso-PID同步控制 双缸液压拉床 电液伺服控制
在线阅读 下载PDF
基于IPSO-LSSVM的风电功率短期预测研究 被引量:28
20
作者 王贺 胡志坚 +2 位作者 张翌晖 张子泳 张承学 《电力系统保护与控制》 EI CSCD 北大核心 2012年第24期107-112,共6页
风电功率预测的关键是预测模型的选择和模型性能的优化。选择最小二乘支持向量机(least squares support vector machine,LSSVM)作为风电功率预测模型,使用改进的粒子群算法(improved particle swarm optimization algorithm,IPSO)对影... 风电功率预测的关键是预测模型的选择和模型性能的优化。选择最小二乘支持向量机(least squares support vector machine,LSSVM)作为风电功率预测模型,使用改进的粒子群算法(improved particle swarm optimization algorithm,IPSO)对影响最小二乘支持向量机回归性能的参数进行优化。在建立了改进的粒子群算法优化最小二乘支持向量机(LSSVM)的风电功率预测模型后,运用该模型对广西某风电场进行了仿真研究。为了对比研究,同时使用前馈(back propagation,BP)神经网络模型和支持向量机(support vector machine,SVM)模型进行了预测。最后采用多种误差指标对三种模型的预测结果进行综合分析。结果表明,使用改进的粒子群算法优化最小二乘向量机(IPSO-LSSVM)的风电功率预测模型具有较高的预测精度。 展开更多
关键词 风电功率预测 改进粒子群算法 最小二乘支持向量机 ipso-LSSVM 误差分析
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部