The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response su...The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi- objective optimization problem is formulated. Non- dominated sorting genetic algorithm-II is used in predict- ing the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine outputand emission parameters depending upon their own requirements.展开更多
Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NS...Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NSGA-Ⅱ), is applied on a spaceborne SAR antenna pattern design. The system consists of two objective functions with two constraints. Pareto fronts are generated as a result of multi-objective optimization. After being validated by a test problem ZDT4, the algorithms are used to synthesize spaceborne SAR antenna radiation pattern. The good results with low Ambi- guity-to-Signal Ratio (ASR) and high directivity are obtained in the paper.展开更多
Tolerance charting is an effective tool to determine the optimal allocation of working dimensions and working tolerances such that the blueprint dimensions and tolerances can be achieved to accomplish the cost objecti...Tolerance charting is an effective tool to determine the optimal allocation of working dimensions and working tolerances such that the blueprint dimensions and tolerances can be achieved to accomplish the cost objectives.The selection of machining datum and allocation of tolerances are critical in any machining process planning as they directly affect any setup methods/machine tools selection and machining time.This paper mainly focuses on the selection of optimum machining datums and machining tolerances simultaneously in process planning.A dynamic tolerance charting constraint scheme is developed and implemented in the optimization procedure.An optimization model is formulated for selecting machining datum and tolerances and implemented with an algorithm namely Elitist Non-Dominated Sorting Genetic Algorithm(NSGA-II).The computational results indicate that the proposed methodology is capable and robust in finding the optimal machining datum set and tolerances.展开更多
This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation...This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II.展开更多
Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be h...Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be hard to exert its ability in carbon reduction.This paper introduces DR into traditional unit commitment(UC)strategy and proposes a multi-objective day-ahead optimal scheduling model for wind farm integrated power systems,since incentive-based DR can accommodate excess wind power and can be used as a source of system spinning reserve to alleviate generation side reserve pressure during both peak and valley load periods.Firstly,net load curve is obtained by forecasting load and wind power output.Then,considering the behavior of DR,a day-ahead optimal dispatching scheme is proposed with objectives of minimum generating cost and carbon emission.Non-dominated sorting genetic algorithm-II(NSGA-II)and satisfaction-maximizing method are adopted to solve the multi-objective model with Pareto fronts and eclectic decision obtained.Finally,a case study is carried out to demonstrate that the approach can achieve economic and environmental aims and DR can help to accommodate the wind power.展开更多
Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characte...Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characterize and optimize a particular mechanical minipump. The optimization work was conducted to cope with the conflict between pressure head and hydraulic efficiency by an improved back-propagation neural network (BPNN) with the non-dominated sorting genetic algorithm-II (NSGA-II). The improved BPNN was utilized to predicate hydraulic performance and, moreover, was modified to improve the prediction accuracy. The NSGA-II was processed for minipump multi-objective optimization which is dominated by four impeller dimensions. During hydraulic optimization, the processing feasibility was also taken into consideration. Experiments were conducted to validate the above optimization methods. It was proved that the optimized minipump was improved by about 24 % in pressure head and 4.75 % in hydraulic efficiency compared to the original designed prototype. Meanwhile, the sensitivity test was used to analyze the influence of the four impeller dimensions. It was found that the blade outlet angle β2 and the impeller inlet diameter Do significantly influence the pressure head H and the hydraulic efficiency η, respec- tively. Detailed internal flow fields showed that the optimum model can relieve the impeller wake and improve both the pressure distribution and flow orientation.展开更多
文摘The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi- objective optimization problem is formulated. Non- dominated sorting genetic algorithm-II is used in predict- ing the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine outputand emission parameters depending upon their own requirements.
文摘Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NSGA-Ⅱ), is applied on a spaceborne SAR antenna pattern design. The system consists of two objective functions with two constraints. Pareto fronts are generated as a result of multi-objective optimization. After being validated by a test problem ZDT4, the algorithms are used to synthesize spaceborne SAR antenna radiation pattern. The good results with low Ambi- guity-to-Signal Ratio (ASR) and high directivity are obtained in the paper.
文摘Tolerance charting is an effective tool to determine the optimal allocation of working dimensions and working tolerances such that the blueprint dimensions and tolerances can be achieved to accomplish the cost objectives.The selection of machining datum and allocation of tolerances are critical in any machining process planning as they directly affect any setup methods/machine tools selection and machining time.This paper mainly focuses on the selection of optimum machining datums and machining tolerances simultaneously in process planning.A dynamic tolerance charting constraint scheme is developed and implemented in the optimization procedure.An optimization model is formulated for selecting machining datum and tolerances and implemented with an algorithm namely Elitist Non-Dominated Sorting Genetic Algorithm(NSGA-II).The computational results indicate that the proposed methodology is capable and robust in finding the optimal machining datum set and tolerances.
文摘This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II.
基金This work is supported by National Natural Science Foundation of China(No.51277015).
文摘Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be hard to exert its ability in carbon reduction.This paper introduces DR into traditional unit commitment(UC)strategy and proposes a multi-objective day-ahead optimal scheduling model for wind farm integrated power systems,since incentive-based DR can accommodate excess wind power and can be used as a source of system spinning reserve to alleviate generation side reserve pressure during both peak and valley load periods.Firstly,net load curve is obtained by forecasting load and wind power output.Then,considering the behavior of DR,a day-ahead optimal dispatching scheme is proposed with objectives of minimum generating cost and carbon emission.Non-dominated sorting genetic algorithm-II(NSGA-II)and satisfaction-maximizing method are adopted to solve the multi-objective model with Pareto fronts and eclectic decision obtained.Finally,a case study is carried out to demonstrate that the approach can achieve economic and environmental aims and DR can help to accommodate the wind power.
文摘Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characterize and optimize a particular mechanical minipump. The optimization work was conducted to cope with the conflict between pressure head and hydraulic efficiency by an improved back-propagation neural network (BPNN) with the non-dominated sorting genetic algorithm-II (NSGA-II). The improved BPNN was utilized to predicate hydraulic performance and, moreover, was modified to improve the prediction accuracy. The NSGA-II was processed for minipump multi-objective optimization which is dominated by four impeller dimensions. During hydraulic optimization, the processing feasibility was also taken into consideration. Experiments were conducted to validate the above optimization methods. It was proved that the optimized minipump was improved by about 24 % in pressure head and 4.75 % in hydraulic efficiency compared to the original designed prototype. Meanwhile, the sensitivity test was used to analyze the influence of the four impeller dimensions. It was found that the blade outlet angle β2 and the impeller inlet diameter Do significantly influence the pressure head H and the hydraulic efficiency η, respec- tively. Detailed internal flow fields showed that the optimum model can relieve the impeller wake and improve both the pressure distribution and flow orientation.