期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Improved Genetic Optimization Algorithm with Subdomain Model for Multi-objective Optimal Design of SPMSM 被引量:8
1
作者 Jian Gao Litao Dai Wenjuan Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第1期160-165,共6页
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet... For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method. 展开更多
关键词 improved Genetic algorithm reduction of flux density spatial distortion sub-domain model multi-objective optimal design
在线阅读 下载PDF
Study on Optimization of Urban Rail Train Operation Control Curve Based on Improved Multi-Objective Genetic Algorithm
2
作者 Xiaokan Wang Qiong Wang 《Journal on Internet of Things》 2021年第1期1-9,共9页
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op... A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect. 展开更多
关键词 multi-objective improved genetic algorithm urban rail train train operation simulation multi particle optimization model
在线阅读 下载PDF
Multi-objective Trajectory Planning Method based on the Improved Elitist Non-dominated Sorting Genetic Algorithm 被引量:3
3
作者 Zesheng Wang Yanbiao Li +3 位作者 Kun Shuai Wentao Zhu Bo Chen Ke Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期70-84,共15页
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob... Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators. 展开更多
关键词 Hybrid manipulator Bezier curve improved optimization algorithm Trajectory planning multi-objective optimization
在线阅读 下载PDF
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:13
4
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 Aerodynamic optimization Dimensional reduction improved multi-objective particle swarm optimization(MOPSO) algorithm multi-objective Principal component analysis
原文传递
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
5
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved Particle SWARM optimization algorithm Double POPULATIONS multi-objective Adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
基于改进蛇优化算法的柔性作业车间调度研究
6
作者 朱敏 王岩 +1 位作者 卞京 卢宇涵 《现代制造工程》 北大核心 2025年第9期12-19,共8页
针对柔性作业车间调度问题(Flexible Job shop Scheduling Problem,FJSP),以优化最大完工时间为目标,提出了一种改进蛇优化(Improved Snake Optimization,ISO)算法。该算法对蛇优化算法进行研究,使用两段式编码替代原算法的实数编码,使... 针对柔性作业车间调度问题(Flexible Job shop Scheduling Problem,FJSP),以优化最大完工时间为目标,提出了一种改进蛇优化(Improved Snake Optimization,ISO)算法。该算法对蛇优化算法进行研究,使用两段式编码替代原算法的实数编码,使得改进后的蛇优化算法可以在离散空间中对蛇个体的位置进行更新。此外,针对原算法中初始种群质量较低的问题,采用GLR策略平衡机器加工负荷,以提高算法的初始化质量。并针对原算法中蛇个体的位置变化与交互机制,在保留原有蛇群演化的基础上使用2个操作算子对其进行重新设计。最后,使用正交实验分析算法参数,并对车间的15个基准算例和1个案例进行仿真和对比,验证了所提算法求解该问题的有效性和稳定性。 展开更多
关键词 柔性作业车间调度 离散优化问题 改进蛇优化算法
在线阅读 下载PDF
改进蛇优化算法及其在短期风电功率预测中的应用 被引量:1
7
作者 周璇 赵梦玲 殷新宇 《云南大学学报(自然科学版)》 北大核心 2025年第2期255-265,共11页
为了对风电功率进行精确预测,基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、改进蛇优化算法(improved snake optimization,ISO)和核极限学习机(kernel extreme learning machine,KELM),提出... 为了对风电功率进行精确预测,基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、改进蛇优化算法(improved snake optimization,ISO)和核极限学习机(kernel extreme learning machine,KELM),提出了一种混合短期风电功率预测模型.首先,利用CEEMD将非平稳的风电功率数据分解为若干相对平稳的分量,以降低原始数据的不稳定性;然后,引入改进蛇优化算法对KELM参数进行优化,并对各平稳分量和残差构建CEEMD-ISO-KELM预测模型;最后,将各分量和残差的预测结果进行重构,得到最终的风电功率预测结果.仿真结果表明,与现有预测模型相比,提出的预测模型能够很好地预测风电功率的变化趋势,在短期风电功率预测中取得了较好的精度. 展开更多
关键词 短期风电功率 改进蛇优化算法 核极限学习机
在线阅读 下载PDF
基于PCA-ISO-SVM的变压器故障诊断
8
作者 胡頔 季振华 +2 位作者 徐达 刘炬 刘闯 《内蒙古电力技术》 2025年第5期1-8,共8页
为了提高变压器故障诊断结果的准确性,提出了一种基于PCA-ISO-SVM的变压器故障诊断方法。采用主成分分析(principal component analysis,PCA)法对变压器故障诊断特征量进行降维,根据累积贡献率将原20维特征量降至7维。利用Tent映射、动... 为了提高变压器故障诊断结果的准确性,提出了一种基于PCA-ISO-SVM的变压器故障诊断方法。采用主成分分析(principal component analysis,PCA)法对变压器故障诊断特征量进行降维,根据累积贡献率将原20维特征量降至7维。利用Tent映射、动态调整和柯西变异策略对基本蛇优化(snake optimizer,SO)算法进行改进,得到寻优性能更好的改进蛇优化(improved snake optimizer,ISO)算法。采用ISO算法对支持向量机(support vector machine,SVM)进行参数寻优,建立了基于PCA-ISO-SVM的变压器故障诊断模型。采用变压器实际故障数据进行实例分析,并与其他模型进行对比,结果表明,PCA-ISO-SVM模型仅出现了1次误诊断,诊断精度为98.33%,明显高于其他模型。将该方法应用于某电力公司故障诊断,诊断结果与变压器吊芯检查结果一致,验证了所提变压器故障诊断方法的有效性和实用性。 展开更多
关键词 变压器 PCA-ISO-SVM 改进蛇优化算法 支持向量机 主成分分析
在线阅读 下载PDF
Optimal Site and Size of Distributed Generation Allocation in Radial Distribution Network Using Multi-objective Optimization 被引量:4
9
作者 Aamir Ali M.U.Keerio J.A.Laghari 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期404-415,共12页
Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an... Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an appropriate number of DGs and their capacity along with the best location.In this paper,the improved decomposition based evolutionary algorithm(I-DBEA)is used for the selection of optimal number,capacity and site of DG in order to minimize real power losses and voltage deviation,and to maximize the voltage stability index.The proposed I-DBEA technique has the ability to incorporate non-linear,nonconvex and mixed-integer variable problems and it is independent of local extrema trappings.In order to validate the effectiveness of the proposed technique,IEEE 33-bus,69-bus,and 119-bus standard radial distribution networks are considered.Furthermore,the choice of optimal number of DGs in the distribution system is also investigated.The simulation results of the proposed method are compared with the existing methods.The comparison shows that the proposed method has the ability to get the multi-objective optimization of different conflicting objective functions with global optimal values along with the smallest size of DG. 展开更多
关键词 Distribution system distributed generation multi-objective optimization active power loss improved decomposition based evolutionary algorithm(I-DBEA)
原文传递
碳纤维复合材料壳体预浸带铺放原位成型轨迹规划 被引量:1
10
作者 刘冬 田明 +4 位作者 王菲 张承双 包艳玲 张承灏 苏忠民 《复合材料学报》 CSCD 北大核心 2024年第12期6488-6497,共10页
针对复合材料壳体封头预浸带铺放原位成型过程中多功能铺放头末端滑移问题,开展对碳纤维复合材料铺放机器人轨迹规划的研究。通过构建预浸带铺放路径模型获取铺放角与中心转角,利用中心转角进行动静坐标转换并运用微分几何解算出铺放位... 针对复合材料壳体封头预浸带铺放原位成型过程中多功能铺放头末端滑移问题,开展对碳纤维复合材料铺放机器人轨迹规划的研究。通过构建预浸带铺放路径模型获取铺放角与中心转角,利用中心转角进行动静坐标转换并运用微分几何解算出铺放位姿,通过改进原始蛇优化算法来提高算法收敛速度与精度并应用于铺放机器人逆运动学,逆解铺放位姿获取铺放机器人前七轴关节角度匹配中心转角实现铺放头末端滑移抑制,进行椭球壳体预浸带铺放原位成型仿真与实验。结果表明,预浸带铺放轨迹规划方法在不等极孔壳体预浸带铺放原位成型实验中没有发生滑移与褶皱现象,铺放位姿精度为10-16;满足预浸带铺放原位成型位姿精度要求,能够应用于实际预浸带铺放原位成型工作。 展开更多
关键词 原位成型 复合材料 铺放机器人 逆运动学 改进蛇优化算法
原文传递
多策略改进的蛇优化算法 被引量:2
11
作者 权浩迪 刘勇国 +4 位作者 傅翀 朱嘉静 张云 兰刚 李巧勤 《计算机技术与发展》 2024年第5期117-125,共9页
为改进蛇优化算法(Snake Optimizer,SO)在探索方式、变量计算、空间搜索方式和种群更新方式等方面存在的不足,提出了一种多策略改进的蛇优化算法(Improved Snake Optimizer,ISO)。首先,提出探索寻优策略,根据个体相对于优势个体的位置... 为改进蛇优化算法(Snake Optimizer,SO)在探索方式、变量计算、空间搜索方式和种群更新方式等方面存在的不足,提出了一种多策略改进的蛇优化算法(Improved Snake Optimizer,ISO)。首先,提出探索寻优策略,根据个体相对于优势个体的位置更新自身的位置,使种群在前期快速收敛到最优解附近。其次,优化变量计算方式,将SO算法中的指数运算改进为多项式运算,提高SO的时间效率。同时引入动态调整搜索空间的机制,随种群进化迭代次数的增加逐步扩展搜索范围以提高寻优能力。最后,引入优势进化策略,淘汰适应度较差的个体并结合优势个体的基因产生新个体,快速提高种群优势基因比例以增加收敛速度。对不同基准测试函数进行寻优实验,分别与经典SO算法和5种启发式算法进行对比,结果表明ISO具有较强的寻优能力。为进一步验证所提算法的高效性和实用性,将ISO应用于全连接神经网络的优化问题,结果表明基于ISO优化的神经网络具有更优的分类效果。 展开更多
关键词 蛇优化算法 启发式算法 优化问题 多策略改进 神经网络
在线阅读 下载PDF
基于改进二进制蛇优化算法的配电网故障定位 被引量:5
12
作者 黎观锋 梁志坚 杨武 《科学技术与工程》 北大核心 2024年第18期7710-7718,共9页
分布式电源(distributed generation,DG)大规模接入给配电系统带来更多不确定性、随机性,系统运行方式更复杂,传统故障定位方法难以适应新型电力系统构建。提出了一种基于改进二进制蛇优化算法(improved binary snake optimization,IBSO... 分布式电源(distributed generation,DG)大规模接入给配电系统带来更多不确定性、随机性,系统运行方式更复杂,传统故障定位方法难以适应新型电力系统构建。提出了一种基于改进二进制蛇优化算法(improved binary snake optimization,IBSO)的新型故障区段定位方法。利用SPM混沌映射生成高质量的随机数序列,以提高算法种群中个体的随机性,并引入了遗传算法的动态变异策略,根据不同的搜索状态和进化阶段来调整变异率和变异方式,提高算法的灵活性和准确性。通过仿真证明,该方法适用于在含有分布式电源的配电网中定位单一和多重故障区段,相比蛇优化算法、传统二进制粒子群算法以及遗传算法在收敛性、快速性和准确性方面更优。 展开更多
关键词 故障区段定位 改进二进制蛇优化算法 SPM混沌映射 动态变异策略 分布式电源
在线阅读 下载PDF
基于WPT-ISO-RELM模型的月径流时间序列预测研究 被引量:13
13
作者 王应武 白栩嘉 崔东文 《水力发电》 CAS 2024年第3期12-18,38,共8页
为提高月径流时间序列的预测精度,提升基本蛇群优化(SO)算法搜索能力,同时提升正则化极限学习机(RELM)预测性能,提出了小波包变换(WPT)-改进蛇群优化(ISO)算法-RELM预测模型。首先,利用WPT将月径流时间序列分解为低频分量和高频分量;其... 为提高月径流时间序列的预测精度,提升基本蛇群优化(SO)算法搜索能力,同时提升正则化极限学习机(RELM)预测性能,提出了小波包变换(WPT)-改进蛇群优化(ISO)算法-RELM预测模型。首先,利用WPT将月径流时间序列分解为低频分量和高频分量;其次,通过构建8个RELM超参数寻优适应度函数对ISO寻优能力进行检验,并与SO算法、灰狼优化(GWO)算法、变色龙群算法(CSA)、鲸鱼优化算法(WOA)、樽海鞘群体算法(SSA)、侏獴优化算法(DMO)、粒子群优化算法(PSO)的优化结果作对比;最后,建立WPT-ISO-RELM模型,并构建包含WPT-SO-RELM在内的17种模型作对比模型,通过黑河流域莺落峡水文站、讨赖河水文站2个月径流预测实例对各模型进行验证。结果表明:①ISO寻优精度优于SO、GWO、CSA、WOA、SSA、DMO、PSO,通过关键参数的改进,能有效提升ISO的极值寻优能力和平衡能力;②WPT-ISO-RELM模型对莺落峡水文站、讨赖河水文站月径流预测的平均绝对百分比误差分别为0.854%、0.447%,平均绝对误差分别为0.245、0.068 m^(3)/s,纳什效率系数均在0.9999以上,优于其他对比模型,具有更高的预测精度和更好的稳健性;③ISO对于高维和低维问题均具有较好的优化效果,算法寻优能力对提升RELM预测精度十分关键,算法优化性能越强,寻优精度越高,由此获得的RELM超参数越优,所构建的模型预测性能越好。 展开更多
关键词 月径流预测 正则化极限学习机 改进蛇群优化算法 小波包变换 群体智能算法 超参数优化
在线阅读 下载PDF
应用于动力学参数辨识的激励轨迹优化研究
14
作者 杨中华 俞经虎 +1 位作者 俞哲 周嘉铨 《机械传动》 北大核心 2024年第11期37-47,共11页
针对机械臂动力学参数辨识问题,提出了一种基于改进型蛇优化算法的激励轨迹优化方法。该方法在传统蛇优化算法的基础上进行创新,通过引入自适应调节算子来替代原有的固定系数,提高了蛇优化算法的全局搜索性能和收敛速度。将改进型蛇优... 针对机械臂动力学参数辨识问题,提出了一种基于改进型蛇优化算法的激励轨迹优化方法。该方法在传统蛇优化算法的基础上进行创新,通过引入自适应调节算子来替代原有的固定系数,提高了蛇优化算法的全局搜索性能和收敛速度。将改进型蛇优化算法应用于机械臂动力学参数辨识过程中的激励轨迹优化设计,并采用迭代重加权最小二乘算法作为参数辨识算法,选择6自由度的协作机器人作为验证对象进行了试验验证。试验结果显示,相较于传统的激励轨迹设计算法,机械臂前3个关节的关节力矩误差均方根减少了20.96%,全部6个关节的关节力矩误差均方根减少了23.58%。研究表明,改进型蛇优化算法在激励轨迹优化设计中的应用对于提高动力学参数辨识准确性具有一定的效果。 展开更多
关键词 协作机器人 动力学模型 改进型蛇优化算法 自适应算子 参数辨识
在线阅读 下载PDF
基于EV变量预处理与多目标蛇优化的微电网调度方法
15
作者 于仲安 夏强威 +1 位作者 肖宏亮 叶康 《计算机应用研究》 CSCD 北大核心 2024年第12期3763-3771,共9页
针对大量电动汽车(EV)入网使微电网运行控制难度增加以及经济调度等问题,提出一种基于EV充放电状态变量预处理和多目标蛇优化的微电网调度方法。首先,通过排列组合的方式得到每辆EV所有充放电方案,按一定顺序给予这些充放电方案编号,并... 针对大量电动汽车(EV)入网使微电网运行控制难度增加以及经济调度等问题,提出一种基于EV充放电状态变量预处理和多目标蛇优化的微电网调度方法。首先,通过排列组合的方式得到每辆EV所有充放电方案,按一定顺序给予这些充放电方案编号,并采用可调度充放电时段结合分时电价的方式进行条件限定以削减变量的决策空间,实现EV变量预处理。其次,建立以等效净负荷波动性、微电网运行成本、EV用户充电成本最小为目标的微电网优化调度模型,并利用改进多目标蛇优化算法进行求解。实验结果表明,所提EV预处理方法能实现EV的有序充放电并降低多方目标值;和其他多目标算法对比,所提方法有效降低了有序充放电模式下的各目标值。综上,所提方法与改进策略能有效提高算法的求解精度,实现电网的经济调度。 展开更多
关键词 微电网 电动汽车 变量预处理 有序充放电 改进多目标蛇优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部