期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
Improved Genetic Optimization Algorithm with Subdomain Model for Multi-objective Optimal Design of SPMSM 被引量:8
1
作者 Jian Gao Litao Dai Wenjuan Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第1期160-165,共6页
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet... For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method. 展开更多
关键词 improved Genetic algorithm reduction of flux density spatial distortion sub-domain model multi-objective optimal design
在线阅读 下载PDF
Study on Optimization of Urban Rail Train Operation Control Curve Based on Improved Multi-Objective Genetic Algorithm
2
作者 Xiaokan Wang Qiong Wang 《Journal on Internet of Things》 2021年第1期1-9,共9页
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op... A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect. 展开更多
关键词 multi-objective improved genetic algorithm urban rail train train operation simulation multi particle optimization model
在线阅读 下载PDF
Multi-objective Trajectory Planning Method based on the Improved Elitist Non-dominated Sorting Genetic Algorithm 被引量:3
3
作者 Zesheng Wang Yanbiao Li +3 位作者 Kun Shuai Wentao Zhu Bo Chen Ke Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期70-84,共15页
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob... Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators. 展开更多
关键词 Hybrid manipulator Bezier curve improved optimization algorithm Trajectory planning multi-objective optimization
在线阅读 下载PDF
Two-to-one differential game via improved MOGWO 被引量:1
4
作者 BAI Yu ZHOU Di +2 位作者 ZHANG Bolun HE Zhen HE Ping 《Journal of Systems Engineering and Electronics》 2025年第1期233-255,共23页
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ... When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage. 展开更多
关键词 differential game improved multi-objective grey wolf optimization(IMOGWO) cooperative pursuit optimal game point
在线阅读 下载PDF
Two-stage optimization of route,speed,and energy management for hybrid energy ship under sea conditions
5
作者 Xiaoyuan Luo Jiaxuan Wang +1 位作者 Xinyu Wang Xinping Guan 《iEnergy》 2025年第3期174-192,共19页
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an... As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group. 展开更多
关键词 Hybrid ship power system two-stage optimization dispatch speed scheduling sea conditions modified A-star algorithm improved grey wolf optimization algorithm
在线阅读 下载PDF
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:13
6
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 Aerodynamic optimization Dimensional reduction improved multi-objective particle swarm optimization(MOPSO) algorithm multi-objective Principal component analysis
原文传递
Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control 被引量:1
7
作者 Xin Mao Hongsheng Su Jingxiu Li 《Energy Engineering》 EI 2024年第12期3929-3951,共23页
The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional volt... The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation. 展开更多
关键词 Virtual synchronous generator(VSG) active power improved linear active disturbance rejection control(ILADRC) radial basis function(RBF)neural networks improved gray wolf optimizer(IGWO)
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
8
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved Particle SWARM optimization algorithm Double POPULATIONS multi-objective Adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
Optimal Operation of Distributed Generations Considering Demand Response in a Microgrid Using GWO Algorithm 被引量:2
9
作者 Hassan Shokouhandeh Mehrdad Ahmadi Kamarposhti +2 位作者 William Holderbaum Ilhami Colak Phatiphat Thounthong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期809-822,共14页
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec... The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program. 展开更多
关键词 MICROGRID demand response program cost reduction gray wolf optimization algorithm
在线阅读 下载PDF
Cascade Optimization Control of Unmanned Vehicle Path Tracking Under Harsh Driving Conditions
10
作者 黄迎港 罗文广 +1 位作者 黄丹 蓝红莉 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第1期114-125,共12页
Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study propose... Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study proposes a cascade control to solve this problem.Based on the new vehicle error model that considers vehicle tire sideslip and road curvature,the feedforward-parametric adaptive linear quadratic regulator(LQR)and proportional integral control-based speed-keeping controllers are used to compose the path-tracking cascade optimization controller for unmanned vehicles.To improve the adaptability of the unmanned vehicle path-tracking control under harsh driving conditions,the LQR controller parameters are automatically adjusted using a back-propagation neural network,in which the initial weights and thresholds are optimized using the improved grey wolf optimization algorithm according to the driving conditions.The speed-keeping controller reduces the impact on the curve-tracking accuracy under nonlinear vehicle speed variations.Finally,a joint model of MATLAB/Simulink and CarSim was established,and simulations show that the proposed control method can achieve stable entry and exit curves at ultra-high speeds for unmanned vehicles.Under strong wind and ice road conditions,the method exhibits a higher tracking accuracy and is more adaptive and robust to external interference in driving and variable curvature roads than methods such as the feedforward-LQR,preview and pure pursuit controls. 展开更多
关键词 unmanned vehicles path tracking harsh driving conditions cascade control improved gray wolf optimization algorithm backpropagation neural network
原文传递
Improved Clamped Diode Based Z-Source Network for Three Phase Induction Motor
11
作者 D.Bensiker Raja Singh R.Suja Mani Malar 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期683-702,共20页
The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems lik... The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error. 展开更多
关键词 Three phase induction motor voltage source inverter improvedΓZSI with clamping diode PI controller fractional order PID controller gray wolf optimizer
在线阅读 下载PDF
不确定环境下多无人机察打一体任务规划方法 被引量:3
12
作者 张栋 李林 +3 位作者 王孟阳 李超越 郑元世 李智军 《北京理工大学学报》 北大核心 2025年第2期111-125,共15页
针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimiza... 针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimization algorithm incorporating multiple improvement strategies,IMISGWO).首先,针对动态环境带来的无人机巡航速度及察打任务消失时间的不确定性,基于可信性理论建立了以最大化任务收益为指标的任务规划数学模型;其次,为实现该问题的快速求解,设计了初始解均匀分布、个体通信机制调整、动态权重更新和跳出局部最优等策略,提升算法解搜索能力;最后,构建了多无人机察打一体典型任务仿真场景,通过数字仿真以及虚实结合半实物仿真试验验证了算法的可行性和有效性.仿真结果表明:算法在求解不确定环境下耦合航迹的多无人机察打一体任务规划问题时,能够生成多机高效的任务执行序列和满足无人机飞行性能约束的飞行轨迹,且能够适用于无人机数量增加导致问题复杂度增加情形下此类问题的求解. 展开更多
关键词 多无人机 不确定环境 察打一体任务 任务规划 改进灰狼优化算法
在线阅读 下载PDF
基于改进MOGWO算法的并联机器人轨迹优化 被引量:2
13
作者 郭彤颖 叶相涛 陈宇 《组合机床与自动化加工技术》 北大核心 2025年第6期20-25,共6页
针对并联机器人运行过程中短时间、低能耗、弱冲击等需求,提出了一种基于改进多目标灰狼算法(IMOGWO)的轨迹优化方法。首先,对并联机器人进行逆运动学求解,在笛卡尔空间选取关键点并映射至关节空间,采用4-3-3-4次多项式插值方法对其运... 针对并联机器人运行过程中短时间、低能耗、弱冲击等需求,提出了一种基于改进多目标灰狼算法(IMOGWO)的轨迹优化方法。首先,对并联机器人进行逆运动学求解,在笛卡尔空间选取关键点并映射至关节空间,采用4-3-3-4次多项式插值方法对其运动轨迹进行规划;其次,对多目标灰狼算法在收敛因子、围猎机制、头狼更新3个方面进行改进优化,优化后的算法具有搜索能力强、收敛速度快等优势;最终,利用改进的多目标灰狼算法对多项式轨迹进行时间-能耗-冲击多目标优化,仿真实验表明优化方法不仅缩短了机器人的运行时间,在降低能耗和减小冲击方面也取得了显著成效,使机器人总体性能得到了有效地提升。 展开更多
关键词 并联机器人 轨迹规划 改进多目标灰狼算法 多目标优化
在线阅读 下载PDF
改进灰狼优化算法优化CNN-LSTM的PEMFC性能衰退预测 被引量:1
14
作者 高锋阳 刘庆寅 +2 位作者 赵丽丽 齐丰旭 刘嘉 《电力系统保护与控制》 北大核心 2025年第13期175-187,共13页
为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memo... 为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memory, CNN-LSTM)的车用PEMFC性能衰退预测方法。首先,通过稳定小波变换对数据集去噪重构,使用改进灰狼算法对实测PEMFC电堆衰退数据进行分析,获得CNN-LSTM最优超参数。其次,利用最优超参数训练CNN-LSTM网络模型进行PEMFC性能衰退预测,并计算PEMFC电堆剩余使用寿命。最后,在电堆静态和动态工况下,将所提方法与传统长短期记忆循环网络、门控循环单元循环网络和未经优化的CNN-LSTM等模型预测进行比较。结果表明:在静态工况中,当训练集占比为60%时,所提方法相比传统CNN-LSTM预测结果均方根误差缩小59.02%,当训练集占比为70%时,PEMFC剩余使用寿命预测与实际相差1.16 h;在动态工况中,当训练集占比为40%时,平均绝对误差缩小18.78%。 展开更多
关键词 质子交换膜燃料电池 改进灰狼优化算法 卷积神经网络-长短期记忆 衰退预测 剩余使用寿命
在线阅读 下载PDF
计及薄弱节点可观测的有源配电网PMU优化配置
15
作者 王书征 韩彬彬 +2 位作者 吴志 郑舒 赵景涛 《电气工程学报》 北大核心 2025年第5期218-229,共12页
伴随大量分布式电源接入配电网,极大地增加了配电网出现双向潮流和电压越限的风险,配电网实时状态感知难度提高,考虑配电网节点数多而同步相量测量单元(PMU)配置成本较为昂贵,提出一种考虑薄弱节点可观测的PMU优化配置方法。首先,针对... 伴随大量分布式电源接入配电网,极大地增加了配电网出现双向潮流和电压越限的风险,配电网实时状态感知难度提高,考虑配电网节点数多而同步相量测量单元(PMU)配置成本较为昂贵,提出一种考虑薄弱节点可观测的PMU优化配置方法。首先,针对大量分布式电源接入引起的电压扰动特性,提出衡量节点电压薄弱程度的综合灵敏度指标;其次,基于经济性的原则,在保证配电网全局状态估计精度最优的同时尽量将其配置在电压薄弱节点处,建立了考虑节点电压综合灵敏度、状态估计误差和配置成本的PMU多目标优化配置模型;采用改进多目标灰狼算法对配置模型进行求解得到PMU最优配置的Parato非劣解集。最后,通过IEEE 33节点和69节点算例进行仿真分析,验证了所提模型的有效性和优越性。 展开更多
关键词 薄弱节点可观测 有源配电网 同步相量测量 状态估计 优化配置 改进多目标灰狼算法
在线阅读 下载PDF
基于改进灰狼算法优化极限学习机的光伏阵列故障诊断方法研究 被引量:3
16
作者 杨琛 牛锋杰 +2 位作者 韩茂林 周宁 周定璇 《发电技术》 2025年第1期72-82,共11页
【目的】光伏阵列在复杂室外工作条件下,发生的故障类型多样且程度不同,为了判断光伏阵列的工作状态,提出一种基于改进灰狼算法优化极限学习机(improved grey wolf optimized extreme learning machine,IGWO-ELM)的故障诊断方法。【方... 【目的】光伏阵列在复杂室外工作条件下,发生的故障类型多样且程度不同,为了判断光伏阵列的工作状态,提出一种基于改进灰狼算法优化极限学习机(improved grey wolf optimized extreme learning machine,IGWO-ELM)的故障诊断方法。【方法】首先,针对9种故障仿真输出特性进行分析,建立了由短路电流、开路电压、最大功率点电流、最大功率点电压、填充因子组成的5维故障特征向量。其次,针对灰狼算法初始位置分布不均匀、全局搜索和局部开发过程不均衡的缺点,引入Circle映射和非线性收敛因子,提出一种改进的灰狼优化算法,优化极限学习机的输入层权重和隐含层节点偏置,以提高算法性能。最后,搭建仿真模型和实验平台并获取故障数据,基于K折交叉验证对数据集进行划分,代入IGWO-ELM模型进行正确率验证,并与其他算法模型进行对比。【结果】IGWO-ELM模型对光伏阵列不同故障具有较高的识别率,对仿真数据和实验数据的分类正确率分别达到98.32%和95.48%。【结论】基于IGWO-ELM的故障诊断方法识别率高,迭代次数少,收敛速度快,可有效判断光伏阵列的工作状态。 展开更多
关键词 太阳能发电 光伏阵列 故障诊断 改进灰狼优化(IGWO)算法 极限学习机(ELM) K折交叉验证 特征提取 仿真
在线阅读 下载PDF
基于强化学习混合算法求解液压缸热冷加工车间调度问题
17
作者 王前莉 李颖 樊海超 《机床与液压》 北大核心 2025年第22期151-160,共10页
针对液压缸热冷加工车间调度问题的复杂性和多目标优化需求,构建多目标调度模型,旨在最小化总完工时间和机器总能耗。液压缸生产过程中涉及并行加工、批处理和单件加工等多种工序,传统调度方法难以兼顾生产效率和能耗控制。为此,提出一... 针对液压缸热冷加工车间调度问题的复杂性和多目标优化需求,构建多目标调度模型,旨在最小化总完工时间和机器总能耗。液压缸生产过程中涉及并行加工、批处理和单件加工等多种工序,传统调度方法难以兼顾生产效率和能耗控制。为此,提出一种基于强化学习的混合灰狼优化算法(IGWO)。采用双层编码结构,设计混合解码策略,分别针对并行工序、热处理工序和单件加工工序进行解码。在灰狼优化算法的基础上,引入基于Q-learning的自适应参数控制策略,通过强化学习动态调整收敛因子和步长因子,提升算法的全局和局部搜索能力。此外,设计渐进式头狼选择机制和基于关键路径的变邻域搜索策略,有效避免算法陷入局部最优。试验结果表明:所提算法在24个测试算例中显著优于NSGA-II、GWO和ABC算法,尤其在较大规模问题上表现出更强的收敛性和多样性。通过工程案例分析进一步验证了该算法在实际生产中的有效性,能够为液压缸热冷加工车间提供高效、节能的调度方案。 展开更多
关键词 热冷加工 强化学习混合算法 多目标优化 混合灰狼优化算法
在线阅读 下载PDF
基于I-GWO-BP神经网络的矿区爆破振动预测
18
作者 徐敏 林卫星 +5 位作者 石磊 欧任泽 于振建 龚永超 胡力可 胡军生 《矿业研究与开发》 北大核心 2025年第10期121-128,共8页
针对现有爆破振动速度预测公式在面对复杂地场环境时预测精度不高的问题,提出一种基于改进灰狼优化算法(I-GWO)的BP神经网络模型。通过改变神经网络收敛因子函数加强导优精度,混沌映射初始化狼群位置加快求解速度,基于步长欧式距离的比... 针对现有爆破振动速度预测公式在面对复杂地场环境时预测精度不高的问题,提出一种基于改进灰狼优化算法(I-GWO)的BP神经网络模型。通过改变神经网络收敛因子函数加强导优精度,混沌映射初始化狼群位置加快求解速度,基于步长欧式距离的比例权重动态调整权重、提升寻优效率来改进灰狼算法。结合李楼-吴集铁矿爆破振动速度监测数据,选取爆心距、最大单段装药量、总装药量作为输入参数建立I-GWO-BP模型。结果表明:I-GWO-BP模型的收敛速度以及收敛精度要优于GWO-BP模型及BP模型,优化效果明显;I-GWO-BP模型的预测值基本处于实测值±0.08 cm/s置信带内,平均绝对百分比误差为13.84%,预测效果显著优于其他预测方法,具有较高的预测精度。研究成果可为矿山的爆破振动速度预测提供一定的参考。 展开更多
关键词 爆破振动速度 BP神经网络 改进灰狼优化算法 预测模型 预测精度
原文传递
基于最小二乘孪生极限学习机的水电系统发电能力预测方法
19
作者 李旻 孙大雁 +3 位作者 梁志峰 过夏明 吴刚 苗树敏 《水利水电技术(中英文)》 北大核心 2025年第8期162-174,共13页
【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进... 【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进行分类建模;随后,采用最小二乘孪生极限学习机(LSTELM)对各分解信号进行预测建模,同时运用改进灰狼优化算法(IGWO)对模型参数进行优化,以提升模型的预测性能;最后对各子序列预测结果进行集成,叠加得到最终的预测结果。【结果】结果显示:所提方法在三个水电站中的预测结果精准可靠。在池潭水电站中,预见期为1 d时,所提模型在直接策略和多输入多输出策略中预测结果的纳什系数(NSE)指标较极限学习机模型分别提高了12.88%和12.11%。预见期由1 d增长至8 d时,传统方法预测结果的NSE指标由0.8840和0.8885逐渐降低到0.5735和0.5671,而本文所提两种策略预测结果分别由0.9979和0.9961逐渐降低到0.9423和0.9286。【结论】结果表明:所提模型在复杂水电系统发电能力预测中具有较强的稳定性和泛化能力,SVMD有效降低了发电能力序列的噪声影响,最小二乘法和孪生结构提升了LSTELM模型的泛化能力,SVMD-IGWO-LSTELM模型在水文特性稳定的水电站预测精度更高,在水文特性复杂的水电站预测能力略有下降但依旧保持高精度,为变化环境下水电系统发电能力预测提供有效方法。 展开更多
关键词 逐次变分模态分解法 发电出力 最小二乘孪生极限学习机 改进灰狼优化算法 影响因素
在线阅读 下载PDF
安全与心理资本视角下建筑工人资源调度研究
20
作者 郭晨 刘佳敏 覃贞鑫 《安全与环境学报》 北大核心 2025年第10期3864-3871,共8页
为研究考虑施工安全及心理资本的建筑工人资源调度问题,构建建筑工人项目成本最低、完工时间最短、安全绩效最高的多目标资源调度模型,基于多策略改进灰狼优化算法,改善基本灰狼优化算法存在的局部最优而早熟收敛、全局搜索能力差的问题... 为研究考虑施工安全及心理资本的建筑工人资源调度问题,构建建筑工人项目成本最低、完工时间最短、安全绩效最高的多目标资源调度模型,基于多策略改进灰狼优化算法,改善基本灰狼优化算法存在的局部最优而早熟收敛、全局搜索能力差的问题,提高算法的全局寻优能力和求解精度,得到建筑工人资源配置方案。结果表明,与传统灰狼优化(Grey Wolf Optimization,GWO)算法和其他两种改进灰狼算法相比,多策略混合灰狼优化算法在模型求解精度方面更优秀,给出的建筑工人资源配置方案更高效安全。 展开更多
关键词 安全社会工程 心理资本 改进灰狼优化算法 资源调度
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部