期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Improved Fruit Fly Optimization Algorithm for Solving Lot-Streaming Flow-Shop Scheduling Problem 被引量:2
1
作者 张鹏 王凌 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期165-170,共6页
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to... An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP. 展开更多
关键词 fruit fly optimization algorithm(FOA) lot-streaming flowshop scheduling job splitting neighborhood-based search cooperation-based search
在线阅读 下载PDF
Improved Genetic Optimization Algorithm with Subdomain Model for Multi-objective Optimal Design of SPMSM 被引量:8
2
作者 Jian Gao Litao Dai Wenjuan Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第1期160-165,共6页
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet... For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method. 展开更多
关键词 improved Genetic algorithm reduction of flux density spatial distortion sub-domain model multi-objective optimal design
在线阅读 下载PDF
Study on Optimization of Urban Rail Train Operation Control Curve Based on Improved Multi-Objective Genetic Algorithm
3
作者 Xiaokan Wang Qiong Wang 《Journal on Internet of Things》 2021年第1期1-9,共9页
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op... A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect. 展开更多
关键词 multi-objective improved genetic algorithm urban rail train train operation simulation multi particle optimization model
在线阅读 下载PDF
Predicting Academic Performance Levels in Higher Education:A Data-Driven Enhanced Fruit Fly Optimizer Kernel Extreme Learning Machine Model
4
作者 Zhengfei Ye Yongli Yang +1 位作者 Yi Chen Huiling Chen 《Journal of Bionic Engineering》 2025年第4期1940-1962,共23页
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T... Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process. 展开更多
关键词 Academic achievement Machine learning Teacher-student relationships Swarm intelligence algorithms fruit fly optimization algorithm
在线阅读 下载PDF
Multi-objective Trajectory Planning Method based on the Improved Elitist Non-dominated Sorting Genetic Algorithm 被引量:3
5
作者 Zesheng Wang Yanbiao Li +3 位作者 Kun Shuai Wentao Zhu Bo Chen Ke Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期70-84,共15页
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob... Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators. 展开更多
关键词 Hybrid manipulator Bezier curve improved optimization algorithm Trajectory planning multi-objective optimization
在线阅读 下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
6
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting fruit fly optimization algorithm(FOA) least SQUARES support vector machine(LSSVM) SEASONAL index
在线阅读 下载PDF
An Adaptive Fruit Fly Optimization Algorithm for Optimization Problems
7
作者 L. Q. Zhang J. Xiong J. K. Liu 《Journal of Applied Mathematics and Physics》 2023年第11期3641-3650,共10页
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ... In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance. 展开更多
关键词 Swarm Intelligent optimization algorithm fruit fly optimization algorithm Adaptive Step Local optimum Convergence Speed
在线阅读 下载PDF
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:13
8
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 Aerodynamic optimization Dimensional reduction improved multi-objective particle swarm optimization(MOPSO) algorithm multi-objective Principal component analysis
原文传递
Performance Prediction of Switched Reluctance Motor using Improved Generalized Regression Neural Networks for Design Optimization 被引量:10
9
作者 Zhu Zhang Shenghua Rao Xiaoping Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第4期371-376,共6页
Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre... Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN. 展开更多
关键词 fruit fly optimization algorithm generalized regression neural networks switched reluctance motor
在线阅读 下载PDF
Fuzzy Fruit Fly Optimized Node Quality-Based Clustering Algorithm for Network Load Balancing
10
作者 P.Rahul N.Kanthimathi +1 位作者 B.Kaarthick M.Leeban Moses 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1583-1600,共18页
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th... Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc. 展开更多
关键词 Ad-hoc load balancing H-MANET fuzzy logic system genetic algorithm node quality-based clustering algorithm improved weighted clustering fruitfly optimization
在线阅读 下载PDF
Binary Fruit Fly Swarm Algorithms for the Set Covering Problem 被引量:1
11
作者 Broderick Crawford Ricardo Soto +7 位作者 Hanns de la Fuente Mella Claudio Elortegui Wenceslao Palma Claudio Torres-Rojas Claudia Vasconcellos-Gaete Marcelo Becerra Javier Pena Sanjay Misra 《Computers, Materials & Continua》 SCIE EI 2022年第6期4295-4318,共24页
Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to so... Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost. 展开更多
关键词 Set covering problem fruit fly swarm algorithm metaheuristics binarization methods combinatorial optimization problem
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
12
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved Particle SWARM optimization algorithm Double POPULATIONS multi-objective Adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
An improved fruit fly optimization algorithm for solving traveling salesman problem 被引量:6
13
作者 Lan HUANG Gui-chao WANG +1 位作者 Tian BAI Zhe WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第10期1525-1533,共9页
The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimizat... The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly's smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision. 展开更多
关键词 Traveling salesman problem fruit fly optimization algorithm Elimination mechanism Vision search OPERATOR
原文传递
An Inverse Power Generation Mechanism Based Fruit Fly Algorithm for Function Optimization 被引量:3
14
作者 LIU Ao DENG Xudong +2 位作者 REN Liang LIU Ying LIU Bo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第2期634-656,共23页
As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implement... As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence.In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism(IPGS) is introduced to enhance local exploitation. Moreover,a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate. 展开更多
关键词 EVOLUTIONARY algorithms fruit fly optimization function optimization META-HEURISTICS
原文传递
An Optimization Algorithm for Service Composition Based on an Improved FOA 被引量:12
15
作者 Yiwen Zhang Guangming Cui +2 位作者 Yan Wang Xing Guo Shu Zhao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第1期90-99,共10页
Large-scale service composition has become an important research topic in Service-Oriented Computing(SOC). Quality of Service(Qo S) has been mostly applied to represent nonfunctional properties of web services and... Large-scale service composition has become an important research topic in Service-Oriented Computing(SOC). Quality of Service(Qo S) has been mostly applied to represent nonfunctional properties of web services and to differentiate those with the same functionality. Many studies for measuring service composition in terms of Qo S have been completed. Among current popular optimization methods for service composition, the exhaustion method has some disadvantages such as requiring a large number of calculations and poor scalability. Similarly,the traditional evolutionary computation method has defects such as exhibiting slow convergence speed and falling easily into the local optimum. In order to solve these problems, an improved optimization algorithm, WS FOA(Web Service composition based on Fruit Fly Optimization Algorithm) for service composition, was proposed, on the basis of the modeling of service composition and the FOA. Simulated experiments demonstrated that the algorithm is effective, feasible, stable, and possesses good global searching ability. 展开更多
关键词 service composition fruit fly optimization algorithm(FOA) Quality of Service(QoS) index
原文传递
考虑机器故障的柔性作业车间鲁棒节能调度方法研究
16
作者 李开心 尹瑞雪 +1 位作者 周鹏 陈光林 《现代制造工程》 北大核心 2025年第10期1-15,共15页
在制造业的生产调度领域,不确定性与能耗问题备受关注。机器故障作为影响调度任务和车间能耗的一个关键不确定因素,其随机性对生产过程与能耗优化具有显著的影响。然而,目前关于机器故障情况下的柔性作业车间节能调度方案选择的研究相... 在制造业的生产调度领域,不确定性与能耗问题备受关注。机器故障作为影响调度任务和车间能耗的一个关键不确定因素,其随机性对生产过程与能耗优化具有显著的影响。然而,目前关于机器故障情况下的柔性作业车间节能调度方案选择的研究相对较少。为助力节能减排,首先建立了一种鲁棒选择模型,旨在快速选择质量较优且节能的重调度方案。其次,设计了一种改进的多目标果蝇优化算法求解该模型。最后,通过10个公开算例和4个不同的机器故障场景验证了所提算法与模型的有效性和实用性。结果表明,与其他7种算法相比,改进的多目标果蝇优化算法有助于输出最优的调度方案;同时,鲁棒选择模型在辅助选择更优的节能调度方案方面发挥了重要作用,为实现节能减排目标提供了有力支持。 展开更多
关键词 柔性作业车间调度 节能 机器故障 鲁棒性 改进的多目标果蝇优化算法
在线阅读 下载PDF
基于合作博弈与动态分时电价的电动汽车有序充放电策略
17
作者 舒征宇 刘文灿 +2 位作者 李黄强 王灿 姚钦 《电力工程技术》 北大核心 2025年第3期179-187,共9页
随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性... 随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性,无差别对待电动汽车的充放电调度,只会徒增电网侧的供电压力。为解决此类问题,文中首先在合作博弈的框架下,考虑电动汽车代理商与电动汽车用户之间的博弈关系,提出电价指导用户充电选择的电动汽车充电调度优化方法,并搭建电动汽车的动态分时优化充放电仿真模型。然后,在求解过程中,利用改进的果蝇优化算法(fruit fly optimization algorithm,FOA)对电动汽车充电时段进行规划。最后,通过算例仿真分析验证该策略的可行性与经济性。与现有的固定电价策略相比,所提策略不仅可以有效减小电网负荷的峰谷差,避免负荷“新高峰”,而且可以提高代理商和电动汽车用户的收益。 展开更多
关键词 充电选择 有序充放电 改进的果蝇优化算法(FOA) 动态分时电价 合作博弈收益 削峰填谷
在线阅读 下载PDF
Optimal Site and Size of Distributed Generation Allocation in Radial Distribution Network Using Multi-objective Optimization 被引量:4
18
作者 Aamir Ali M.U.Keerio J.A.Laghari 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期404-415,共12页
Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an... Distributed generation(DG)allocation in the distribution network is generally a multi-objective optimization problem.The maximum benefits of DG injection in the distribution system highly depend on the selection of an appropriate number of DGs and their capacity along with the best location.In this paper,the improved decomposition based evolutionary algorithm(I-DBEA)is used for the selection of optimal number,capacity and site of DG in order to minimize real power losses and voltage deviation,and to maximize the voltage stability index.The proposed I-DBEA technique has the ability to incorporate non-linear,nonconvex and mixed-integer variable problems and it is independent of local extrema trappings.In order to validate the effectiveness of the proposed technique,IEEE 33-bus,69-bus,and 119-bus standard radial distribution networks are considered.Furthermore,the choice of optimal number of DGs in the distribution system is also investigated.The simulation results of the proposed method are compared with the existing methods.The comparison shows that the proposed method has the ability to get the multi-objective optimization of different conflicting objective functions with global optimal values along with the smallest size of DG. 展开更多
关键词 Distribution system distributed generation multi-objective optimization active power loss improved decomposition based evolutionary algorithm(I-DBEA)
原文传递
基于果蝇算法的无线传感网络信标节点定位 被引量:1
19
作者 李晓 梁春林 《计算机仿真》 2024年第10期341-345,共5页
在无线传感网络中,多个节点需要协同工作来实现节点定位。但在传播过程中,信号受反射、散射等因素的影响,导致信号路径复杂、不确定性大,增加了信标节点定位的难度。因此,提出一种果蝇算法下无线传感网络信标节点精准定位方法。通过建... 在无线传感网络中,多个节点需要协同工作来实现节点定位。但在传播过程中,信号受反射、散射等因素的影响,导致信号路径复杂、不确定性大,增加了信标节点定位的难度。因此,提出一种果蝇算法下无线传感网络信标节点精准定位方法。通过建立无线传感网络拓扑模型,分析节点结构,根据构建的模型获取无线传感网络信标节点的定位优化目标函数。通过改进果蝇算法求解定位优化目标函数,实现无线传感网络信标节点的精准定位。实验结果表明,所提算法的无线传感网络信标节点定位准确度在85%以上,且定位误差在0.1-0.4之间,表明所提算法定位精度高、整体应用效果好。 展开更多
关键词 无线传感网络 改进果蝇算法 定位优化目标函数 网络拓扑模型 信标节点定位
在线阅读 下载PDF
基于惯性权重调整的果蝇优化算法在WSN中的应用
20
作者 孙若鹏 权悦 +2 位作者 刘帅帅 国海 余雪茜 《荆楚理工学院学报》 2024年第4期15-25,共11页
目的:针对无线传感器网络随机部署节点的区域覆盖和传感器节点能量消耗问题,提出一种基于惯性权重余弦自适应调整策略的改进果蝇优化算法。方法:该算法在果蝇优化算法基础上,通过引入惯性权重的学习因子调整策略,在线调整算法的搜索步... 目的:针对无线传感器网络随机部署节点的区域覆盖和传感器节点能量消耗问题,提出一种基于惯性权重余弦自适应调整策略的改进果蝇优化算法。方法:该算法在果蝇优化算法基础上,通过引入惯性权重的学习因子调整策略,在线调整算法的搜索步长。结果:增强了果蝇个体的自适应性及全局搜索能力,从而实现全局最优。结论:仿真实验表明,提出的改进果蝇优化算法不仅提高了收敛速度和全局搜索能力,还显著提升了WSN的覆盖率。 展开更多
关键词 无线传感器网络 改进果蝇优化算法 惯性权重余弦自适应调整策略 学习因子调整策略 覆盖率
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部