Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,...Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method.展开更多
The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are v...The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems(IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly.展开更多
The halbach permanent magnet synchronous motor(HPMSM)combines the advantages of permanent magnet motors and halbach arrays,which make it very suitable to act as a robot joint motor,and it can also be used in other fie...The halbach permanent magnet synchronous motor(HPMSM)combines the advantages of permanent magnet motors and halbach arrays,which make it very suitable to act as a robot joint motor,and it can also be used in other fields,such as electric vehicles,wind power generation,etc.At first,the sizing equation is derived and the initial design dimensions are calculated for the HPMSM with the rated power of 275W,based on which the finite element parametric model of the motor is built up and the key structural parameters that affect the total harmonic distortion of air-gap flux density and output torque are determined by analyzing multi-objective sensitivity.Then the structure parameters are optimized by using the cuckoo search algorithm.Last,in view of the problem of local overheating of the motor,an improved stator slot structure is proposed and researched.Under the condition of the same outer dimensions,the electromagnetic performance of the HPMSM before and after the improvement are analyzed and compared by the finite element method.It is found that the improved HPMSM can obtain better performances.展开更多
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents...Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.展开更多
基金Supported by the Anhui Province Sports Health Information Monitoring Technology Engineering Research Center Open Project (KF2023012)。
文摘Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method.
基金Supported by the National Natural Science Foundation of China(71471140)
文摘The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems(IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly.
基金This work was supported by the National Natural Science Foundation of China(51507087)the Six Talents Summit Project of Jiangsu Province(XNYQC-017)the Science and Technology Planning Project of Nantong City(MS22019017).
文摘The halbach permanent magnet synchronous motor(HPMSM)combines the advantages of permanent magnet motors and halbach arrays,which make it very suitable to act as a robot joint motor,and it can also be used in other fields,such as electric vehicles,wind power generation,etc.At first,the sizing equation is derived and the initial design dimensions are calculated for the HPMSM with the rated power of 275W,based on which the finite element parametric model of the motor is built up and the key structural parameters that affect the total harmonic distortion of air-gap flux density and output torque are determined by analyzing multi-objective sensitivity.Then the structure parameters are optimized by using the cuckoo search algorithm.Last,in view of the problem of local overheating of the motor,an improved stator slot structure is proposed and researched.Under the condition of the same outer dimensions,the electromagnetic performance of the HPMSM before and after the improvement are analyzed and compared by the finite element method.It is found that the improved HPMSM can obtain better performances.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under 5214JS220010.
文摘Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.