The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ...The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to ...The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to eliminate the external and inteirial diffusion, respectively. Then, the improved method combining with the least square and the genetic algorithm was proposed to solve the homogeneous model and the shrinking core model. It was found that the improved genetic algorithm method has good stability by studying the fitness function at each generation. In the homogeneous model, the activation energy with and without sodium carbonate was 54.89 and 95.56 kJ/mol, respectively. And. the activation energy with and without sodium carbonate in the shrinking core model was 49.83 and 92.18 kJ/mol, respectively. Therefore, it was concluded that the sodium carbonate has the catalytic action. In addition, results showed that the estimated conversions were agreed well with the experimental ones, which indicated that the calculated kinetic parameters were valid and the proposed method was successfully developed.展开更多
This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorit...This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality.展开更多
Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of...Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.展开更多
As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new meth...As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new method of detection is proposed based on improved genetic algorithm and extreme learning machine.Taking five different typical diseases with common crops as the objects,this method first preprocesses the images of crops and selects the optimal features for fusion.Then,it builds a model of crop disease identification for extreme learning machine,introduces the hill-climbing algorithm to improve the traditional genetic algorithm,optimizes the initial weights and thresholds of the machine,and acquires the approximately optimal solution.And finally,a data set of crop diseases is used for verification,demonstrating that,compared with several other common machine learning methods,this method can effectively improve the crop-disease identification precision and detection abilities and provide a basis for the identification of other crop diseases.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
The UWB localization problem can be mapped as an optimization problem, which can be solved by genetic algorithm. In the localization process, the traditional fitness function does not include the ranging information b...The UWB localization problem can be mapped as an optimization problem, which can be solved by genetic algorithm. In the localization process, the traditional fitness function does not include the ranging information between tags, resulting in insufficient ranging information and limited improvement of the localization accuracy. In view of this, an improved genetic localization algorithm is proposed. First, a new fitness function is constructed, which not only includes the ranging information between the tag and the base station, but also the ranging information between the tags to ensure that the ranging information is fully utilized in the localization process. Then, the search method based on Brownian motion is adopted to ensure that the improved algorithm can speed up the convergence speed of the localization result. The simulation results show that, compared with the traditional genetic localization algorithm, the improved genetic localization algorithm can reduce the influence of the ranging error on the localization error and improve the localization performance.展开更多
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet...For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.展开更多
In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completi...In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completion time,a mathematical model of resource scheduling in cloud data center is established.The two-stage resource scheduling optimization simulation is realized by using the conventional genetic algorithm.On the technology of the conventional genetic algorithm,an adaptive transformation operator is designed to improve the crossover and mutation of the genetic algorithm.The experimental results show that the improved genetic algorithm can significantly reduce the total completion time of the task,and has good convergence and global optimization ability.展开更多
Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state ...Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state space directly and has distributed computing version.Soit is faster and gives higher precision.Aided by IGA,a new optimization strategy for theflexibility analysis and retrofitting of existing heat exchanger networks is presented.A case studyshows that IGA has the ability of finding the global optimum with higher speed and better preci-sion.展开更多
Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development o...Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.展开更多
This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mut...This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mutation probability in different conditions. The superior convergence property of the new method is evaluated by applying it to two simulation examples.展开更多
Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly s...Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly society. To meet these challenges, we propose a UC model considering energy saving and emission reduction. By using real-number coding method, swap-window and hill-climbing operators, we present an improved real-coded genetic algorithm(IRGA) for UC. Compared with other algorithms approach to the proposed UC problem, the IRGA solution shows an improvement in effectiveness and computational time.展开更多
The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.Th...The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.展开更多
This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined ...This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability.展开更多
The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding...The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding populations and selection strategies or selection effectiveness is not fully investigated.Here,we compared the selection effectiveness of combined and individual direct selection strategies using half-and full-sib families produced from advanced-generation P.tabuliformis seed orchard as our test populations.Our results revealed that,within half-sib families,average diameter at breast height(DBH),tree height,and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%,18.56%,and 31.01%,respectively,than those selected by the combined selection strategy.Furthermore,significant differences(P<0.01)were observed between the two strategies in terms of the expected genetic gains for average tree height and volume.In contrast,within full-sib families,the differences in tree average DBH,height,and volume between the two selection strategies were relatively minor with increase of 0.17%,2.73%,and 2.21%,respectively,and no significant differences were found in the average expected genetic gains for the studied traits.Half-sib families exhibited greater phenotypic and genetic variation,resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk.Based on genetic distance estimates using molecular markers,our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm(IAPGA)reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs,respectively.In conclusion,the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation P.tabuliformis seed orchards.展开更多
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op...A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.展开更多
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
文摘The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
基金the National Natural Science Foundation of China(21476001)Key Project of Anhui Provincial Department of Education(KJ2017A045)are gratefully acknowledgedOpen Fund of Shaanxi Key Laboratory of Energy Chemical Process Intensification(No.SXECPI201601).
文摘The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to eliminate the external and inteirial diffusion, respectively. Then, the improved method combining with the least square and the genetic algorithm was proposed to solve the homogeneous model and the shrinking core model. It was found that the improved genetic algorithm method has good stability by studying the fitness function at each generation. In the homogeneous model, the activation energy with and without sodium carbonate was 54.89 and 95.56 kJ/mol, respectively. And. the activation energy with and without sodium carbonate in the shrinking core model was 49.83 and 92.18 kJ/mol, respectively. Therefore, it was concluded that the sodium carbonate has the catalytic action. In addition, results showed that the estimated conversions were agreed well with the experimental ones, which indicated that the calculated kinetic parameters were valid and the proposed method was successfully developed.
文摘This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality.
文摘Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.
基金This paper is supported by the National Youth Natural Science Foundation of China(61802208)the National Natural Science Foundation of China(61572261)+4 种基金the Natural Science Foundation of Anhui(1908085MF207 and 1908085QE217)the Excellent Youth Talent Support Foundation of Anhui(gxyqZD2019097)the Postdoctoral Foundation of Jiangsu(2018K009B)the Higher Education Quality Project of Anhui(2019sjjd81,2018mooc059,2018kfk009,2018sxzx38 and 2018FXJT02)the Fuyang Normal University Doctoral Startup Foundation and Fuyang Government Research Foundation(2017KYQD0008 and XDHXTD201703).
文摘As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new method of detection is proposed based on improved genetic algorithm and extreme learning machine.Taking five different typical diseases with common crops as the objects,this method first preprocesses the images of crops and selects the optimal features for fusion.Then,it builds a model of crop disease identification for extreme learning machine,introduces the hill-climbing algorithm to improve the traditional genetic algorithm,optimizes the initial weights and thresholds of the machine,and acquires the approximately optimal solution.And finally,a data set of crop diseases is used for verification,demonstrating that,compared with several other common machine learning methods,this method can effectively improve the crop-disease identification precision and detection abilities and provide a basis for the identification of other crop diseases.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
文摘The UWB localization problem can be mapped as an optimization problem, which can be solved by genetic algorithm. In the localization process, the traditional fitness function does not include the ranging information between tags, resulting in insufficient ranging information and limited improvement of the localization accuracy. In view of this, an improved genetic localization algorithm is proposed. First, a new fitness function is constructed, which not only includes the ranging information between the tag and the base station, but also the ranging information between the tags to ensure that the ranging information is fully utilized in the localization process. Then, the search method based on Brownian motion is adopted to ensure that the improved algorithm can speed up the convergence speed of the localization result. The simulation results show that, compared with the traditional genetic localization algorithm, the improved genetic localization algorithm can reduce the influence of the ranging error on the localization error and improve the localization performance.
基金This work was supported in part by the National Natural Science Foundation of China under Grant51507016。
文摘For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.
基金National Natural Science Foundation of China(61473216)Shaanxi Provincial Fund(2015JM6337)。
文摘In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completion time,a mathematical model of resource scheduling in cloud data center is established.The two-stage resource scheduling optimization simulation is realized by using the conventional genetic algorithm.On the technology of the conventional genetic algorithm,an adaptive transformation operator is designed to improve the crossover and mutation of the genetic algorithm.The experimental results show that the improved genetic algorithm can significantly reduce the total completion time of the task,and has good convergence and global optimization ability.
文摘Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state space directly and has distributed computing version.Soit is faster and gives higher precision.Aided by IGA,a new optimization strategy for theflexibility analysis and retrofitting of existing heat exchanger networks is presented.A case studyshows that IGA has the ability of finding the global optimum with higher speed and better preci-sion.
基金supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme(No.294931)the National Science Foundation of China (No.51175262)+1 种基金Jiangsu Province Science Foundation for Excellent Youths(No.BK2012032)Jiangsu Province Industry-Academy-Research Grant(No.BY201220116)
文摘Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.
基金Supported by the Climbing PrOgram-National Key Project for Fundamental Research in China, Grant NSC92097
文摘This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mutation probability in different conditions. The superior convergence property of the new method is evaluated by applying it to two simulation examples.
基金the National Natural Science Foundation of China(Nos.61004088 and 61374160)
文摘Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly society. To meet these challenges, we propose a UC model considering energy saving and emission reduction. By using real-number coding method, swap-window and hill-climbing operators, we present an improved real-coded genetic algorithm(IRGA) for UC. Compared with other algorithms approach to the proposed UC problem, the IRGA solution shows an improvement in effectiveness and computational time.
基金National Key R&D Program of China(2016YFd01304)Postgraduate Innovation Support Project of Shijiazhuang Tiedao University(YC20035).
文摘The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.
基金Fund of Taishan Scholar in Shandong Province,Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability.
基金financially supported by the Biological BreedingNational Science and Technology Major Project(2023ZD0405806)the National Key R&D Program for the 14th Five-Year Plan in China(2022YFD2200304).
文摘The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding populations and selection strategies or selection effectiveness is not fully investigated.Here,we compared the selection effectiveness of combined and individual direct selection strategies using half-and full-sib families produced from advanced-generation P.tabuliformis seed orchard as our test populations.Our results revealed that,within half-sib families,average diameter at breast height(DBH),tree height,and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%,18.56%,and 31.01%,respectively,than those selected by the combined selection strategy.Furthermore,significant differences(P<0.01)were observed between the two strategies in terms of the expected genetic gains for average tree height and volume.In contrast,within full-sib families,the differences in tree average DBH,height,and volume between the two selection strategies were relatively minor with increase of 0.17%,2.73%,and 2.21%,respectively,and no significant differences were found in the average expected genetic gains for the studied traits.Half-sib families exhibited greater phenotypic and genetic variation,resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk.Based on genetic distance estimates using molecular markers,our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm(IAPGA)reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs,respectively.In conclusion,the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation P.tabuliformis seed orchards.
基金This work was supported by the Youth Backbone Teachers Training Program of Henan Colleges and Universities under Grant No.2016ggjs-287the Project of Science and Technology of Henan Province under Grant Nos.172102210124 and 202102210269.
文摘A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.