期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Object Recognition Algorithm Based on an Improved Convolutional Neural Network 被引量:1
1
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
在线阅读 下载PDF
Ultra-short-term Photovoltaic Power Prediction Based on Improved Temporal Convolutional Network and Feature Modeling
2
作者 Hao Xiao Wanting Zheng +1 位作者 Hai Zhou Wei Pei 《CSEE Journal of Power and Energy Systems》 2025年第5期2024-2035,共12页
Accurate ultra-short-term photovoltaic(PV)power forecasting is crucial for mitigating variations caused by PV power generation and ensuring the stable and efficient operation of power grids.To capture intricate tempor... Accurate ultra-short-term photovoltaic(PV)power forecasting is crucial for mitigating variations caused by PV power generation and ensuring the stable and efficient operation of power grids.To capture intricate temporal relationships and enhance the precision of multi-step time forecast,this paper introduces an innovative approach for ultra-short-term photovoltaic(PV)power prediction,leveraging an enhanced Temporal Convolutional Neural Network(TCN)architecture and feature modeling.First,this study introduces a method employing the Spearman coefficient for meteorological feature filtration.Integrated with three-dimensional PV panel modeling,key factors influencing PV power generation are identified and prioritized.Second,the analysis of the correlation coefficient between astronomical features and PV power prediction demonstrates the theoretical substantiation for the practicality and essentiality of incorporating astronomical features.Third,an enhanced TCN model is introduced,augmenting the original TCN structure with a projection head layer to enhance its capacity for learning and expressing nonlinear features.Meanwhile,a new rolling timing network mechanism is constructed to guarantee the segmentation prediction of future long-time output sequences.Multiple experiments demonstrate the superior performance of the proposed forecasting method compared to existing models.The accuracy of PV power prediction in the next 4 hours,devoid of meteorological conditions,increases by 20.5%.Furthermore,incorporating shortwave radiation for predictions over 4 hours,2 hours,and 1 hour enhances accuracy by 11.1%,9.1%,and 8.8%,respectively. 展开更多
关键词 Astronomical feature feature modeling improved temporal convolutional neural network solar power generation ultra-short-term power generation prediction
原文传递
GCN-LSTM spatiotemporal-network-based method for post-disturbance frequency prediction of power systems 被引量:4
3
作者 Dengyi Huang Hao Liu +1 位作者 Tianshu Bi Qixun Yang 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期96-107,共12页
Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly importa... Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly important.These characteristics can provide effective support in coordinated security control.However,traditional model-based frequencyprediction methods cannot satisfactorily meet the requirements of online applications owing to the long calculation time and accurate power-system models.Therefore,this study presents a rolling frequency-prediction model based on a graph convolutional network(GCN)and a long short-term memory(LSTM)spatiotemporal network and named as STGCN-LSTM.In the proposed method,the measurement data from phasor measurement units after the occurrence of disturbances are used to construct the spatiotemporal input.An improved GCN embedded with topology information is used to extract the spatial features,while the LSTM network is used to extract the temporal features.The spatiotemporal-network-regression model is further trained,and asynchronous-frequency-sequence prediction is realized by utilizing the rolling update of measurement information.The proposed spatiotemporal-network-based prediction model can achieve accurate frequency prediction by considering the spatiotemporal distribution characteristics of the frequency response.The noise immunity and robustness of the proposed method are verified on the IEEE 39-bus and IEEE 118-bus systems. 展开更多
关键词 Synchronous phasor measurement Frequency-response prediction Spatiotemporal distribution characteristics improved graph convolutional network Long short-term memory network Spatiotemporal-network structure
在线阅读 下载PDF
How to accurately extract large-scale urban land?Establishment of an improved fully convolutional neural network model
4
作者 Boling YIN Dongjie GUAN +4 位作者 Yuxiang ZHANG He XIAO Lidan CHENG Jiameng CAO Xiangyuan SU 《Frontiers of Earth Science》 SCIE CSCD 2022年第4期1061-1076,共16页
Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neur... Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neural network was provided for perceiving large-scale urban change,by modifying network structure and updating network strategy to extract richer feature information,and to meet the requirement of urban construction land extraction under the background of large-scale low-resolution image.This paper takes the Yangtze River Economic Belt of China as an empirical object to verify the practicability of the network,the results show the extraction results of the improved fully convolutional neural network model reached a precision of kappa coefficient of 0.88,which is better than traditional fully convolutional neural networks,it performs well in the construction land extraction at the scale of small and medium-sized cities. 展开更多
关键词 improved fully convolutional neural network remote sensing image classification city boundary precision evaluation
原文传递
Self-explaining analysis of facility environments on 2-lane rural roads with an improved lightweight CNN considering drivers’visual perception
5
作者 Weixi Ren Bo Yu +3 位作者 Yuren Chen Shan Bao Kun Gao You Kong 《International Journal of Transportation Science and Technology》 2025年第3期99-113,共15页
Speeding is one of the primary contributors to rural road crashes.Self-explaining theory offers a solution to reduce speeding,which suggests that well-designed facility environments(i.e.,road facilities and surroundin... Speeding is one of the primary contributors to rural road crashes.Self-explaining theory offers a solution to reduce speeding,which suggests that well-designed facility environments(i.e.,road facilities and surrounding landscapes)can automatically guide drivers to choose appropriate speeds on different road categories.This study proposes an improved lightweight convolutional neural network(LW-CNN)that includes drivers’visual perception characteristics(i.e.,depth perception and dynamic vision)to conduct the self-explaining analysis of the facility environment on 2-lane rural roads.Data for this study are gathered through naturalistic driving experiments on 2-lane rural roads across five Chinese provinces.A total of 3502 visual facility environment images,alongside their corresponding operation speeds and speed limits,are collected.The improved LW-CNN exhibits high accuracy and efficiency in predicting operation speeds with these visual facility environment images,achieving a train loss of 0.05%and a validation loss of 0.15%.The semantics of facility environments affecting operation speeds are further identified by combining this LW-CNN with the gradient-weighted class activation mapping(Grad-CAM)algorithm and the semantic segmentation network.Then,six typical 2-lane rural road categories perceived by drivers with different operation speeds and speeding probability(SP)are sum-marized using k-means clustering.An objective and comprehensive analysis of each category’s semantic composition and depth features is conducted to evaluate their influence on drivers’speeding probability and road category perception.The findings of this study can be directly used to optimize facility environments from drivers’visual perception to decrease speeding-related crashes. 展开更多
关键词 Self-explaining analysis SPEEDING improved lightweight convolutional neural network(LW-CNN) Drivers’visual perception characteristics Road category perception
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部